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Numerical weather prediction (NWP), a method of weather forecasting using equations that describe atmo-
spheric flows and behavior, is used extensively to help predict weather conditions along roadways and has
important implications for maintaining safety and efficiency on the transportation network. An insufficiently
dense surface observation network presents a major limitation in obtaining the current state of the atmosphere
for NWP at high spatial and temporal resolutions, such as required by road weather applications. Connected
vehicle technologies, where public, private, and commercial vehicles serve as weather‐observing platforms,
can be used to fill in these gaps in the surface weather observation network.
A pilot study was formed to quantify the impact of a dense network of observations along roadways, such as

would exist with fully implemented connected vehicle technologies, on NWP. First, a simulated vehicle probe
dataset was created. This dataset was assimilated into the Weather Research and Forecasting (WRF) model for
select case studies, and the resulting output compared against observations and a baseline WRF run without the
vehicle data assimilation. It was found that these observations had an overall positive impact on precipitation
and other surface variable outputs, though in several cases the impact was slight. Major improvements
occurred when using wiper status as a proxy for precipitation to apply forward error correction to a point
model forecast of probability of precipitation and quantitative precipitation forecasts.
1. Introduction and finer resolution in an effort to improve forecast usability and skill
During the last several decades, the atmospheric science commu-
nity has committed significant resources to improving numerical
weather prediction (NWP), including the process of data assimilation
(DA; e.g., [71,9,21,3,80]). DA is the process by which observations
are used to correct the initial state of the model to a more accurate rep-
resentation of the true weather conditions. Modern NWP depends on
the availability of a large number of observations to properly represent
current conditions and initialize the model predictions. Such models
are useful for a variety of applications, including standard weather
forecasting [30], renewable energy [43], wildfire prediction and
response [14], and surface transportation safety and mobility [67].
Forecasts of road‐specific weather conditions are used throughout
the transportation sector [57], and such forecasts are critical for oper-
ations including staff management and timing of plowing operations
[79].

Proper initial conditions for the state of the atmosphere at the start
of any NWP model run are critical to ensure accurate, useful model
output, and atmospheric observations can be used to improve this ini-
tial condition via DA techniques. As NWP models move toward finer
[44,65], the current state of the atmosphere must also be sampled at
higher resolutions to properly resolve features at the same scale as
the model [38]. While significant strides have been made to increase
coverage, both in surface observing density (e.g., [64,47]) and via
remote sensing techniques (e.g., [16,83]), the current observing net-
work is far coarser than high‐resolution NWP models with 1–4‐km hor-
izontal grid spacing, particularly in more rural areas.

Application of high‐resolution surface observations for hazardous
weather assessment and prediction along roadways has also been an
active area of research [42,41,19]. Hazardous weather conditions con-
tribute to 1.2 million crashes annually in the U.S., with 5,376 fatalities
and 418,005 injuries [7]. These totals account for 21% of all crashes.
This is far higher than the percent of crashes that would be expected to
occur in hazardous weather conditions by chance alone (less than
10%; [35]). Economic impacts are severe as well, with $8.659 billion
in annual economic losses to trucking companies alone as a result of
weather‐related delays [35].

To provide road‐specific observations such as pavement tempera-
ture, Road Weather Information System (RWIS) Environmental Sensor
Stations (ESS) have been implemented in most U.S. states [59]. These
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stations provide critical data about weather conditions at the road
location, along with road‐specific observations like pavement condi-
tion (e.g., wet or slick roads) necessary for maintaining roadway
safety and mobility [74]. However, conditions may change rapidly
between stations, which are often tens of kilometers apart, and many
localized conditions such as patchy black ice or dense fog can exist
between stations. The weather data that could be collected by con-
nected vehicle (CV) technologies [78] from the millions of vehicles
on the roadways may be used to fill the spatial and temporal gaps
between fixed weather stations. This can impact not only road
weather information and forecasting, but also larger‐scale applica-
tions such as NWP [42]. Once implemented outside transportation
agencies and in the general consumer vehicle fleet, there is a poten-
tial for millions of new observations along the nation’s roadways.
Anderson et al. [2] showed that air temperatures from vehicles’
built‐in sensors can be of useful quality for meteorological applica-
tions, and other important atmospheric variables such as dewpoint
temperature and air pressure may be obtained from vehicles as well
with externally‐mounted sensors. Additionally, non‐traditional obser-
vations such as windshield wiper speed are used in road weather
applications as a proxy for weather observations [66], and these
proxies may be useful for NWP applications if properly converted
into the types of observations accepted by DA systems.

The usability of crowd‐sourced observations is being investigated
across a variety of applications, including meteorological. Examples
include Mass and Madaus [45] and Madaus and Mass [40], who
explored the use of smartphone surface pressure observations in
NWP, and Muller et al. [53], who used a number of crowd‐sourced
observing platforms to study urban heat island effects. Like other
non‐traditional data source studies, this paper focuses on the use of
CV data outside the typical transportation applications and into a
wider weather context. Specifically, this pilot study generated CV
observations and assimilated them into an NWP model for five case
studies over Minnesota and Michigan for a variety of weather condi-
tions. Representing a first step in applying CV data in NWP, the results
of the case studies are used to investigate the potential utility of these
data and identify future efforts needed to fully explore and refine the
use of this upcoming source of high‐resolution surface observations.
2. Data and methods

2.1. Cases

A case study approach was used for this initial investigation, with
the idea that more extensive studies can be designed based on the
results of this pilot study. Cases were chosen to cover a variety of
weather and observation scenarios to meet the goal of examining
what, if any, benefits to forecast quality are obtained by assimilating
vehicle data into NWP models. The study approach included five case
days, each chosen to represent a different weather regime. These
regimes were: heavy rain/flooding, heavy snow, light snow, no precip-
itation with some fog, and mixed‐phase precipitation (rain changing to
snow).

For each case, a representative 24‐hour period was chosen with an
additional 24 h prior to the start of each period used for model spin‐up.
The two model domains covered (i) the state of Minnesota and (ii) the
state of Michigan. These regions were selected to leverage prior work
done as part of the Integrated Mobile Observations (IMO) project
[12,10]. The details of each case can be found in Table 1.
2.2. Vehicle data translator simulations

While several projects are underway to integrate CV into current
transportation operations (e.g., [24]), CV technology is limited in
deployment, and thus the amount of vehicle data available for case
2

analysis remains very small [28]. Assimilating currently available
vehicle data, which would be received from approximately 20 to
200 unique vehicles per day [12], would neither have a likely impact
on the model nor be representative of the usefulness of a fully
deployed CV system. Because the necessary volume of observations
to assess any potential impacts, even in a pilot study, are not currently
available, it was necessary to simulate the CV data based on neighbor-
ing atmospheric observations. To produce such a dataset that is large
enough to assess the impacts of CV data from a fully deployed system,
a vehicle data simulator was used. This approach is similar to an
Observation System Simulation Experiment (OSSE; [4]) in that the
vehicle observation system was simulated. However, this study dif-
fered from an OSSE because the observations were simulated from true
observations of the atmospheric state on case days, rather than from
output of another NWP model run (i.e., a “nature run”). OSSEs are
commonly used in atmospheric science research [1,84] to evaluate
the usefulness of a proposed observing network or platform (e.g., a
new weather‐observing satellite) before it is deployed and observa-
tions are available (e.g., [39,13,36,29]).

Vehicle observations were generated using a simulator that was
built and is available as part of the Pikalert® system’s Vehicle Data
Translator (VDT; [66,67]). The user specifies which observation sets
to use (radar, background model, surface station observations, etc.),
the update cycle, a road segment configuration file, and the number
of vehicle observations per road segment. The number of vehicle
observations per segment can be varied by road type, geographic loca-
tion, and time of day. Each road segment is assigned an observation
based on the input data available within a time window and radius
around the segment using a nearest neighbor approach. Once mean
values of observations are assigned to the segment, the specified num-
bers of vehicle observations are created for each observation type
using a random selection of values from a Gaussian distribution about
the mean. This method was used to simulate a realistic distribution of
different values that may be measured by different vehicles due to
inconsistency in instrumentation types and lack of instrument
maintenance.

For this experiment, gridded analysis data from the Real‐Time
Mesoscale Analysis (RTMA; [18]) and surface station data (i.e., Auto-
mated Surface Observation System [ASOS; [55]] stations and RWIS
ESS) were used to simulate vehicle observations during the 24‐hour
spin up period and the 24‐hour simulation period for each case study.
A gridded radar product from the Multi‐Radar Multi‐Sensor (MRMS)
product suite [85] was used to simulate vehicle wiper status by using
radar reflectivity ranges consistent with different wiper speed cate-
gories (off, intermittent, low, high) used in the Pikalert system’s Road
Weather Hazard (RWH) module [66].

A road segment Network Common Data Format (NetCDF; [61]) file
was generated for both Minnesota and Michigan using Geographic
Information System (GIS) shape files obtained from the Minnesota
Department of Transportation (MnDOT; [51]) and the Michigan
Department of Technology, Management, & Budget [48], respectively.
Two files for each state were created: a less dense case that included
interstates and U.S. highways, and a more dense case that included
interstates, U.S. highways, and state highways.

To represent the variability among geographic areas, the number of
vehicle observations varied by urban area and time of day. A list of
urban areas with populations over 50,000 was generated for each state
based on the 2010 U.S. Census [77]. Any city in qualitatively close
proximity to another on the list was combined into a metro area. For
example, cities such as Warren, Sterling Heights, Dearborn, and Livo-
nia, MI, are all close suburbs of the city of Detroit. These and other sub-
urbs with populations over 50,000 were combined into one Detroit
Metro Area for the purpose of the simulations. Once the cities were
identified and metro areas grouped, the area of each was defined sub-
jectively from a map based on a center latitude/longitude of the city or
metro along with a radius about this center that encompassed most of



Table 1
Case descriptions.

Case Date (UTC) Case
Type

State Case Rationale Description

1 0500 31 May –

0500 1 Jun 2014
Rain/
Flooding

MN Benefits of mobile data on a high impact rain event Waves of thunderstorms moved through the domain, leading to high rain
totals and flooding

2 0000 6 Apr –
0000 7 Apr 2014

Dry/Fog MN Benefits of mobile data on a mostly dry case/low
visibility

Ridging with seasonable temperature and dry conditions; a few areas of fog
briefly in the early morning hours

3 1200 31 Mar –
1200 1 Apr 2014

Mixed
Phase

MN Benefits of mobile data on a rain/snow transition
event

A low pressure system with accompanying cold front forced rain switching
to snow; wind speeds around 25 to 35 knots

4 0500 5 Jan –

0500 6 Jan 2014
Heavy
Snow

MI Benefits of mobile data on a high impact snow event A cold front forced widespread moderate to heavy snow across the domain
with temperatures dropping to −10 °C; wind speed around 15 to 20 knots

5 0000 25 Feb –

0000 26 Feb
2014

Light
Snow

MI Benefits of mobile data on a low precipitation case,
but which may have a high impact on the roadway

Spotty light snow forced by a shortwave trough
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the city/metro area. Any area of a state not within these city/metro
areas was defined as “rural”.

Annual average traffic density (AATD) measurements were used to
determine the maximum number of vehicles that may be expected
along a five‐mile segment of interstate in each city/metro during peak
travel times. These measurements were obtained from MnDOT [52]
and the Michigan DOT (MDOT; [49]). However, CVs cannot be
assumed to make up even the majority of vehicles on the road any time
in the near future. Goodall [25] found that if a federal mandate were
issued for inclusion of CV technology in all newly manufactured vehi-
cles, then the technology penetration would be expected to be around
5% in the first year and around 30% after 6 to 7 years. These values
(5% and 30%) were used for the less dense and more dense simula-
tions, respectively. For example, if a given road segment was expected
to have 20 vehicles travel over it in a given 5‐minute period based on
AATD, then 1 vehicle observation would be produced for the less
dense simulation and 6 vehicle observations would be produced for
the more dense simulation. Table 2 lists the cities used in the simula-
tions and their associated centers/radii, along with the number of
vehicle observations per five‐mile road segment for both the less dense
and more dense cases.

Along with location and technology penetration, the density of
vehicle observations would vary considerably by type of road (e.g.,
interstate vs. state highway) and time of day. To account for this,
hourly data from each road type were obtained from MnDOT for each
urban area and representative rural areas. Distributions of hourly traf-
fic rates were used to determine the hour of day with the highest den-
sity of vehicles. After this, approximate percentage reductions were
calculated for each off hour. To account for the time zone difference
between Michigan and Minnesota, the percentages used for Michigan
were offset one hour from Minnesota (in UTC). The hourly percentages
Table 2
List of urban areas included in the vehicle data simulation with city center and area r
interstate road segment at peak traffic density hour for the less dense and more den

City Center Lat/Lon

Detroit Metro 42.45°N,83.19°W
Grand Rapids Metro 42.94°N,85.68°W
Lansing Metro 42.71°N,84.55°W
Ann Arbor 42.27°N,83.73°W
Ypsilanti 42.24°N,83.62°W
Flint 43.01°N,83.66°W
Kalamazoo 42.27°N,85.59°W
Battle Creek 42.34°N,85.18°W
Saginaw 43.43°N,83.94°W
Minneapolis-St. Paul Metro 44.97°N,93.22°W
Rochester 44.02°N,92.47°W
Duluth 46.79°N,92.10°W
St. Cloud 45.55°N,94.19°W
Rural n/a
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are shown in Fig. 1. The AATD was also used to compare the number of
vehicles on different road types (interstate, U.S. highway, and state
highway). Overall, interstates had the highest traffic counts, followed
by U.S. highways, and state highways had the lowest traffic counts.
U.S. and state highway traffic counts were compared against interstate
traffic counts in order to set the number of vehicles relative to the
interstates. They were set to 70% and 35% of the traffic counts on
interstates, respectively.

The number of vehicle observations located in each city/metro area
in Table 2 was assigned to a five‐minute period for the interstate road-
way at peak traffic time (2200 UTC for Minnesota and 2100 UTC for
Michigan) at that location; both 5% (less dense) and 30% (more dense)
vehicle penetration values were assigned. From there, the road type
and time of day determined the final number of vehicle observations
simulated per road segment. For example, the Minneapolis‐St. Paul
Metro was assigned 14 vehicles on an interstate at the peak travel hour
for the less dense case. The number of vehicle observations at 0300
UTC on a U.S. highway in this metro area would be vehi-
cles*hour*road, or 14*0.5*0.7 = 4.9, rounded up to 5 vehicle obser-
vations simulated.

After the vehicle simulations were complete, a median value was
taken for each road segment. This process results in values that would
be available from Pikalert VDT output and gives a more manageable
number of meaningful values rather than providing thousands of
sub‐grid resolution observations. Simulating a varying number of vehi-
cles on each segment for different areas and times provided realistic
variability and error to the road segment median values.

It is important to note that the simulations of the number of vehi-
cles per road segment represents the ideal distribution of vehicles on
the roadway – a homogeneous one. In a fully deployed CV network,
it is likely CV‐equipped cars will not be homogeneously distributed.
adius definitions along with the number of vehicle observations generated on an
se case types.

Radius Less Dense More Dense

30 km 24 144
7 km 12 74
7 km 5 30
5 km 12 73
3 km 16 96
6 km 7 44
5 km 6 35
4.5 km 8 46
4.5 km 9 53
30 km 14 83
6 km 5 31
8 km 7 40
5 km 9 53
n/a 3 18



Fig. 1. Percentage of total observations by hour for Minnesota, normalized by the maximum hourly observations. Michigan percentages are shifted one hour
earlier (to the left) due to local time zone difference.
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Therefore, for the 5% technology penetration case, it is possible for
two neighboring road segments to have a 10% and 1% technology pen-
etration respectively, even if the overall technology penetration across
the U.S. is 5%. While it was not possible to accurately estimate what
this heterogeneity would look like in a future 5% or 30% penetration
of CV‐equipped vehicles for the cases presented in this pilot study, it is
important to keep in mind that the homogeneous approach herein rep-
resents the highest impact scenario. Any heterogeneity is likely to
reduce the number of road segments with a CV observation, which
would in turn decrease the impact of this new dataset on NWP
forecasts.

2.3. Numerical weather prediction models

2.3.1. The weather research and forecasting model
The Weather Research and Forecasting Advanced Research WRF

(WRF‐ARW) model version 3.6.1 [68,60] was chosen as the NWP
model for this experiment. The two model domains (over Minnesota
and Michigan) were each configured with a 250 × 250 grid point
outer domain (Δx = 4 km) and a time step of 15 s, and a
Fig. 2. Model domain for Cases 4 and 5 (left) and Cases 1, 2, and 3 (right). The out
marked by a white border.

4

481 × 481 grid point nested domain (Δx = 1.333 km) with a time
step of 5 s. The inner domain was approximately centered in the parent
domain and covered the entirety of Minnesota (with the exception of
Flag Island in the northernmost part of the state) and the entirety of
Michigan (Fig. 2). Both domains were configured with 51 vertical
levels. The National Oceanic and Atmospheric Administration’s
(NOAA) Rapid Refresh (RAP) assimilation and model system [5] pro-
vided model initial conditions.

For the most part, the physics parameterization schemes used in the
WRF model for these case studies were the same as those used in the
RAP model at the time the WRF simulations were conducted. Specifi-
cally, both used the Thompson microphysics scheme [76], the Rapid
Radiation Transfer Model Global (RRTMG) scheme for both longwave
and shortwave radiation [32], and the Mellor‐Yamada‐Nakanishi‐
Niino (MYNN) planetary boundary layer and surface layer schemes
[54]. For the cumulus (convection) parameterization scheme, the
RAP uses the Grell‐Dévényi scheme [26] while this study’s WRF model
used the updated Grell three‐dimensional (3D) cumulus scheme [27].
The Grell 3D scheme allows for subsidence spreading in neighboring
grid columns, which is a useful property in high‐resolution simulations
er domain is marked by the border of the image, and the inner domain (d02) is
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as subsidence typically occurs over a wider area than convective
updrafts. The cumulus scheme was only used on the outer 4‐km
domain, while explicit convection was permitted on the inner 1.333‐
km domain where cumulus parameterization would not work well at
this fine grid spacing [31]. For the land surface scheme, the RAP uses
the Rapid Update Cycle (RUC) scheme [70] while the WRF model in
this study used the Noah land surface model [75].

The Four‐Dimensional Data Assimilation (FDDA) observation nudg-
ing scheme [71–73] was used to assimilate both surface station and
simulated vehicle observations. FDDA first compares an observation
with the model‐predicted state (temperature, moisture/humidity, or
wind). An artificial nudging term is then added onto the equations
of motion to gradually nudge the model toward the observation state.
For the observations assimilated, a time window half‐width of 30 min
and a radius of influence of 20 km for both domains were used, as rec-
ommended by W. Cheng of NCAR (personal communication, 7 Jul
2015). Observations were given a quality‐check flag of 0–10 by the
FDDA system, with 10 being the highest quality and values of 5–10
retained for assimilation.

The FDDA assimilated non‐mobile observations for all case studies
from the National Centers for Environmental Prediction (NCEP)
Meteorological Assimilation Data Ingest System (MADIS; [50,46],
https://madis.ncep.noaa.gov). This dataset includes standard surface,
radiosonde, and aircraft observations, as well as satellite wind, pro-
filer, marine buoy, and land mesonet observations. This configuration
was defined as the baseline experiment for all the case studies, with
the impacts of adding vehicle observations examined in subsequent
runs.

After a 24‐hour spin up period, FDDA analyses were created for the
24‐hour period of interest. At hours 0, 6, 12, and 18 of the period of
interest, 6‐hour free forecasts using the WRF model were initialized
from the WRF‐FDDA analyses, meaning that at these four time periods,
the WRF model was initialized using data assimilation but allowed to
run out six hours without additional FDDA analyses.

2.3.2. The road weather forecast system
Some observations, such as precipitation (derived from wiper sta-

tus), cannot easily be assimilated into the WRF model using the FDDA
technique. More advanced techniques, such as three‐dimensional vari-
ational analysis (3DVAR; [23]), have been used to assimilate radar
reflectivity observations. However, assimilation of wiper status point
observations converted into a radar reflectivity suitable for assimila-
tion was outside the scope of this pilot project and is left for future
research.

Although not able to be assimilated directly into the WRF model
using existing DA methods, observations of wiper status may still be
valuable for improving forecasts during the first several hours of a
model run if used via a post‐processing technique. A post‐processing
method currently used as part of the Pikalert system involves forward
error correction (FEC) of output from the Road Weather Forecast Sys-
tem (RWFS) point‐based consensus forecasting system [58,6].

The RWFS consists of two main engines: the Dynamic Integrated
Forecast system (DICast®; [43]) and the Model of the Environment
and Temperature of Roads (METRo; [15]). The atmospheric portion
of the model works by ingesting output from multiple forecast models
and using a series of weights based on model performance to produce a
consensus forecast. This forecast can then be adjusted using observed
data, such that the forecast is fit to the observation at hour 0, then the
influence of the observation decreases through time until it decays
completely. For example, if the consensus forecast for air temperature
at lead time 0 is 15 °C, but observations at that location indicate the
temperature is 10 °C, then the first few hours of the forecast are all
adjusted colder to correct for this error.

This FEC method was used to analyze the potential usefulness of
mobile observations that cannot readily be assimilated into the WRF
model, specifically wiper status. RWFS forecasts from over Minnesota
5

and Michigan during the IMO project were leveraged, and the simu-
lated wiper status was used to FEC the RWFS point forecasts on each
interstate segment (non‐interstate segments were not available during
IMO). Because the FEC was applied to real‐time forecasts that had
already used FEC on other variables such as air temperature, the con-
tribution of the wiper status was isolated. The Quantitative Precipita-
tion Forecast (QPF) FEC methodology was developed using the radar
bounds from the vehicle data simulations and the default NWS
Weather Surveillance Radar 1988 Doppler (WSR‐88D) Z‐R relation-
ship of Z = 300R1.4, where Z is radar reflectivity and R is rainfall rate
[22]. This provided a mechanism for turning the wiper status of a vehi-
cle into an approximate precipitation accumulation value. The proba-
bility of precipitation (PoP) methodology simply used a binary on/off
of wipers and a degraded approach such that PoP for hours 0 and 1
was 100% if wipers were on, degrading by 25% through hour 3 and
with no correction applied to hours 4 to 6.

2.4. Experiments and verification

The WRF model was run with assimilation for four different exper-
iments. For all the experiments, air temperature, dewpoint tempera-
ture, and wind speed and direction observations were assimilated.
Barometric pressure observations were used indirectly to convert the
dewpoint temperature observations into a specific humidity value, as
barometric pressure is not a state variable and thus cannot be assimi-
lated with FDDA. The four experiments were as follows:

1. “Baseline” – Only MADIS observations were assimilated, with no
vehicle observations

2. “VehObs Less” – Both MADIS observations and vehicle observa-
tions were assimilated, with the vehicle observations numbering
in the “less dense” scenario (5% penetration, no state highways)

3. “VehObs More” – Both MADIS observations and vehicle observa-
tions were assimilated, with the vehicle observations numbering
in the “more dense” scenario (30% penetration, including state
highways)

4. “VehObs More Wind” – As with “VehObs More,” but with the addi-
tion of a theoretical wind speed and direction obtained from vehi-
cle observations

The first experiment, the “Baseline,” included only those atmo-
spheric observations that are currently available to NWP users to serve
as a control run against which the experiments that included simulated
vehicle observations could be compared.

For all four experiments, the four free forecasts defined in Sec-
tion 2.3.1 were analyzed. A fifth experiment was also run, where
two runs of the RWFS were compared: the real‐time output of the
RWFS for each case (“NoWipers” hereafter) and the RWFS output with
FEC applied from vehicle wiper status (“Wipers” hereafter).

Two datasets served as the verification data for the model runs. For
precipitation, the NCEP Stage IV product [37] was used. This is a
CONUS‐wide hourly analysis of Quantitative Precipitation Estimates
(QPEs) produced by deriving a QPE from radar observations, then cor-
recting the estimated precipitation totals with available rain gauge
measurements. Stage IV is a standard QPE product for verification in
the modeling community and is widely used (e.g., [17,82,11]).
Although a standard for verification, the limitations of Stage IV associ-
ated with radar‐based precipitation estimation uncertainties, errors
near and below the freezing level, and quality control and processing
discontinuities between regions must be kept in mind while interpret-
ing Stage IV analyses [69,56] and thus the verification results based on
them. Observations from the North American Model (NAM) Data
Assimilation System (NDAS) Prepbufr data [63] were used for all other
variables. The Prepbufr data include a variety of observations (e.g.,
from ASOS stations, upper‐air soundings) and are quality checked
before being disseminated.
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Standard verification statistics [34,81] were produced using the
Model Evaluation Tools (MET) software package, which is freely avail-
able from the Development Testbed Center (DTC; [8]). The WRF out-
put was regridded to match the Stage IV grid, and bias‐corrected root
mean square error (BCRMSE), mean error (ME), and contingency table
statistics (precipitation only) were calculated. The BCRMSE and ME
were used because BCRMSE is independent of ME (and RMSE is
not); thus, BCRMSE is the standard deviation of the errors and repre-
sentative of the spread around the mean error, while ME represents
the overall bias. Contingency table statistics (probability of detection,
POD; false alarm ratio, FAR; critical success index, CSI; and bias) allow
an analysis of the spatial prediction of precipitation regions compared
Fig. 3. Time series of percentage change in BCRMSE between the Baseline case a
BCRMSE is closer to 0, or improved performance, for the runs with vehicle data a

6

to the observed precipitation areas. For the RWFS precipitation fore-
casts, the forecast was matched with the nearest Stage IV precipitation
observation and Brier score, receiver operating characteristic (ROC)
plots, and contingency table statistics were calculated. The Brier score
and ROC plots were chosen for their ability to evaluate the perfor-
mance of probability forecasts. To facilitate interpretation of the
results, BCRMSE, ME, and Brier score were compared using the per-
cent improvement over the “Baseline” relative to the perfect score
(Eq. 1) of the different experiments’ verification metrics (i.e., a skill
measurement). The results here focus on the surface observations only,
where surface‐based vehicle data are expected to have the largest
impact.
nd cases including vehicle data assimilation. A positive change indicates the
ssimilation.
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3. Results

Due to the small sample size (five cases), it is recognized that the
below results are not statistically robust for all scenarios and there is
a large amount of uncertainty in the results. However, it is hoped that
the initial results from this pilot study will lead to larger confirmatory
studies with representatively large samples. While no statistical con-
clusions can be reached with these results, they demonstrate the
potential impacts of vehicle‐based observation DA.
Fig. 4. Time series of percentage change in ME between the Baseline case and ca
closer to 0, or improved performance, for the runs with vehicle data assimilation.
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3.1. WRF atmospheric variables

For all cases, WRF forecasts of the 2‐m air temperature, 2‐m dew-
point temperature, mean sea level pressure (MSLP), and 10‐m wind
speed forecasts were verified against the NDAS Prepbufr observations.

In general, the BCRMSE (Fig. 3) was improved by 1%–3% for most
of the cases, lead times, and data assimilation tests for each variable.
The “VehObs More” (Fig. 3b, e, h, k) and “VehObs More Wind” tests
(Fig. 3c, f, i, l), which had a 30% technology penetration versus 5%
penetration for the “VehObs Less” test, performed better in compar-
ison with the “Baseline” case for all four variables. This is most marked
with Case 3, where the “VehObs Less” test had a performance decrease
ses including vehicle data assimilation. A positive change indicates the ME is
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of 1%–4% in comparison to the “Baseline” case (Fig. 3a, d, g, j), but the
two denser tests showed 1%–3% performance improvements (Fig. 3b,
c, e, f, h, i, k, l). The performance improvements tended to be flat
through time, meaning there was not a strong dependence on lead
hour. However, a few tests did have performance decreasing with
increasing lead hour. An example in Fig. 3 is Case 5 (purple time ser-
ies), where the “VehObs More” and “VehObs More Wind” tests had a
nearly 8% improvement over the “Baseline” at the first lead time for 2‐
m temperature (Fig. 3e, f), which decayed to 0%–1% by lead hours 5
and 3, respectively.

The results for ME are shown in Fig. 4. Overall, there was little dif-
ference in ME between the three assimilation types, and in most
instances ME was improved at least a small amount over the “Baseline”
in the vehicle data assimilation cases. Particularly large improvements
can be seen for MSLP forecasts for Case 2 (Fig. 4a, b, c; red series), 2‐m
temperature for Case 2 (Fig. 4d, e, f; red series), and 10‐m wind speed
for Case 1 (Fig. 4j, k, l; black series). Decreased ME performance is evi-
dent for the “VehObs Less” for Case 3 for all observation types (Fig. 4a,
d, g, j; blue series), and a large performance reduction through forecast
hour 4 for 2‐m dewpoint temperature for Case 5 (Fig. 4g, h, i; purple
series). Percent improvement in ME is vulnerable to large, erratic val-
ues when the absolute value of the denominator (i.e., the ME for the
baseline) is small, which explains the seemingly volatile time series
for Case 1 for 2‐m temperature (Fig. 4d, e, f; black series) and Case
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Fig. 5. Performance diagrams for Case 1 by precipitation thresholds: a) >0 mm, b)
lead through six hours, and points are scaled based on amount of active weather
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4 for both MSLP (Fig. 4a, b, c; green series) and 2‐m dewpoint
(Fig. 4g, h, i; green series).
3.2. WRF QPF

Contingency table statistics and skill scores were used to assess the
QPF produced with and without vehicle data assimilation. Although
all cases were evaluated, for brevity only Case 1 (the heavy rain case)
plots and results are presented here.

Performance diagrams [62] were used to visualize the contingency
table verification measures. These plots take advantage of the mathe-
matical relationships between probability of detection (POD), false
alarm ratio (FAR), critical success index (CSI), and frequency bias
(FB) to plot all four of these statistical measures in a single diagram.
In general, points located in the upper right part of the diagram have
the most skill while those in the lower left have the least skill. Points in
the upper left have a high POD but also high FAR and FB, while points
in the lower right have low POD, FAR, and FB. CSI values increase
from the lower left to the upper right corners. At first glance
(Fig. 5), there is little difference between the QPF verification statistics
for the Baseline and other models with vehicle data assimilation, as
most points are clustered together. While performance differed little
between experiments, the “VehObs More” runs slightly outperformed
the “Baseline” and “VehObs Less” runs, particularly in thresholds
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>1 mm, c) >2 mm, and d) >5 mm. Each point represents a different forecast
on a grid point (larger dot = fewer null case grid points at that lead hour).



Fig. 7. Receiver Operating Characteristic (ROC) curves for each case for the
original RWFS Probability of Precipitation outputs (circles) and the PoP after
wiper status forward error correction (triangles). Curves closest to the upper
left show best performance. The color scheme is the same as that for Fig. 6.

Table 3
Area under the curve for ROC analysis of RWFS probability of precipitation with
and without wiper status forward error correction.

Case Without Wipers With Wipers Percent Improvement

1 0.798 0.855 28.2
2 0.676 0.736 18.5
3 0.692 0.758 21.4
4 0.974 0.956 −69.2

A. Siems-Anderson et al. Transportation Research Interdisciplinary Perspectives 8 (2020) 100253
>1 mm (Fig. 5, b–d; red and green points), at small values of about
~0.02 increase in CSI.

3.3. RWFS PoP and QPF

Percent improvements (Eq. 1) in Brier scores associated with the
application of the FEC for a PoP threshold of >0 mm are shown in
Fig. 6. For most cases and lead times, a large increase in Brier score
performance for PoP forecasts was achieved over the “Baseline” RWFS
forecasts. This result is most evident for Case 1, the heavy rain case,
with as much as a 30% performance improvement. Results for three
of the cases indicated a decrease in PoP performance for the analysis
(zero) hour with the addition of connected vehicle data, but all cases
were associated with improved performance by either the first or sec-
ond lead hour. Due to the design of the algorithm, no differences in
performance at lead hour four and beyond could be expected because
the wiper status no longer impacted the model.

A receiver operating characteristic (ROC) plot (Fig. 7) also analyzes
the performance of the probabilistic forecasts at various probability
thresholds (for every 10% increment of probability value from 0 to
100%). For the majority of cases and thresholds, the FEC of PoP with
wiper status improved the performance relative to the original RWFS
forecast. The exception is Case 4, the heavy snow case, where the
ROC lines are very closely aligned through a PoP of 70%, and PoP
of 80% to 100% did not perform as well after FEC. The ROC results
can be quantified by calculating the area under the ROC curve, shown
in Table 3. The areas for Cases 1, 2, and 3 improved around 20% (con-
sistent with the Brier scores), while the scores for Case 4 decreased by
69% (though this was only a 0.02 actual change in magnitude), and
Case 5 improved only marginally, by 1.4%.

Precipitation accumulation forecasts (QPFs) were also evaluated,
and a performance diagram comparing contingency table statistics
between the original RWFS forecast and the FEC using wipers is shown
in Fig. 8. The arrows connect the original RWFS run value (base of
arrow) to the FEC using wipers (head of arrow). Arrows pointing to
the right and/or to the top of the diagram indicate improvements in
false alarms and detections of precipitation respectively. As was found
Fig. 6. Brier Score by lead hour for each case. A positive change indicates a
Brier Score closer to 0, or improved performance, for the run with wiper status
forward error correction.

5 0.655 0.660 1.4

9

in the PoP evaluation, the results for all cases except Case 4 indicate a
substantial improvement in the QPF when FEC using wipers was
applied to the RWFS output. This performance improvement held for
all analyzed precipitation thresholds and is demonstrated by the move-
ment of the arrows toward the upper right of the performance dia-
grams in Fig. 8.
4. Discussion

This paper presents the earliest steps in assimilating observations
from CVs into an NWP model and quantifying their impact on model
performance. While verification results were mixed for this pilot pro-
ject, overall this new dataset made a modest but appreciable impact
on WRF model output. BCRMSE and ME of WRF surface variables
(2‐m temperature, 2‐m dewpoint, 10‐m wind speed, and MSLP) were
generally improved by 1%–5%, and WRF QPF skill scores were slightly
higher for the more dense vehicle data assimilation cases. Because CV
observations are all located at the surface, it is not expected that they
would make significant impacts on larger‐scale (meso‐alpha to synop-
tic) flow patterns. This is especially true for limited‐area domains as
in the present study. Using larger domains with vehicle data available
throughout the domain, instead of restricted to a single state or area as
in this study, would likely be beneficial for forecast performance. That
change would reduce the impacts of lateral boundary condition errors
sweeping across the domain, and also allow for more of the domain to



Fig. 8. Performance diagrams for RWFS QPF for Cases 1 – 5 (a – e). Arrows point from the original QPF score to the QPF score after wiper status forward error
correction. Circles show little change between the two scores.
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benefit from upstream and neighborhood impacts and corrections
resulting from DA of vehicle observations.

The FEC using wiper status showed the most dramatic benefit of
vehicle observations, with PoP performance increasing around 10%
to 20% for Cases 1–3 and QPF categorical scores also improving dras-
tically, with CSI increasing by between 0.1 and 0.4 in most instances. It
is encouraging that the FEC using wiper status, rather than precipita-
tion accumulation, led to the most improvement in the case with the
10
heaviest and most widespread precipitation. Leveraging wiper status
data could hold particular promise for forecast improvements in areas
where radar coverage is poor or non‐existent, such as in areas of com-
plex terrain and rural states like Alaska.

These results are reflective of ideal conditions in terms of distribu-
tion of CV observations and timeliness of the observations. It is
assumed that CV observations are homogeneously distributed across
each urban area defined, and that there is less than a five‐minute



A. Siems-Anderson et al. Transportation Research Interdisciplinary Perspectives 8 (2020) 100253
latency associated with obtaining observations. In a future deploy-
ment, it is more likely that CV‐equipped vehicles will be heteroge-
neously distributed and some observations may have an intolerably
long latency. As long as an accurate location and date/time stamp
are associated with every observation collected, the only effect of these
issues will be to decrease the number of unique CV‐based observations
that are available for DA, rather than introducing inaccuracies to the
final model output.

The results of this pilot study support the use of CV observations for
applications outside strictly vehicle‐to‐vehicle safety communications
or even road weather itself into a wider weather enterprise context.
This represents a significant reach of CV benefits for not only the safety
of individuals traveling the roadways, but also into weather prediction
on larger scales. Given the safety implications of CVs on the roadways,
safety related to road weather, and the economic impacts of extreme
weather events [33], CV technology and observations have the poten-
tial to save lives and ease economic impacts of weather as they become
more and more deployed. This is especially important in light of the
Federal Communications Commission’s (FCC’s) exploration of opening
up the 5.9 GHz band previously reserved for safety applications of CV
technology [20], which could prove detrimental at best to the ongoing
deployment efforts [24].

Future work should include limiting the assessment of vehicle
observation impacts to data‐sparse areas, where the road network
may provide a much‐needed boost in surface observations that is
drowned out in more data‐rich areas such as major urban centers. Dif-
ferent FDDA parameters or different assimilation methods, such as
variational or ensemble Kalman filter techniques, should also be tested
to determine the optimal way to handle this unique dataset that has
irregular horizontal spacing, massive volume, quality control chal-
lenges, and non‐traditional observing platforms. As more and more
CVs come online, testing with real rather than simulated data would
also be highly beneficial.

Although much work remains before it will be possible to optimally
incorporate CV observations into NWP, this pilot project shows that
these high‐resolution observations have great potential to improve
model initial conditions and short‐range forecasts, especially in areas
with few current surface observations.
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