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A B S T R A C T

Past and future electric vehicle sales shares in the Netherlands and Norway are analysed with the Powertrain
Technology Transition Market Agent Model. This system dynamics model was expanded to include the leading
Norwegian car market and updated with recent data on policy incentives. Three model validation tests are
discussed: the reproduction of past behaviour from 2010 till 2017, policy sensitivity, and feedback loop knock-
out analysis. Findings point in the direction that regulation on emission targets for manufacturers are necessary
for a transition away from new sales of fossil fuel-based vehicles. Only strong incentives resulted in large sales
shares of zero emission vehicles in the Netherlands and Norway.

1. Introduction

Car use causes a series of negative externalities (Parry et al., 2007). At
the local level, air pollutant emissions have an adverse impact on human
health (Hoek et al., 2013; Künzli et al., 2000). At the global level, green-
house gas (GHG) emissions contribute to climate change (Lorenzoni and
Pidgeon, 2006; Woodcock et al., 2009). Petrol and diesel cars generate both
types of emissions. Compared to petrol cars, diesel cars have lower GHG
emissions but higher air pollutant emissions such as nitrogen oxides (NOx).
The importance and urgency for a transition to lower emissions of the global
car fleet is widely accepted (UNFCCC, 2015), and a transition to electric
vehicles (EVs) is often reasoned to be best.

The International Energy Agency (IEA) anticipates a global vehicle stock
of 130 million EVs by 2030, accounting for current and announced policies
(these include battery electric vehicles, BEVs; fuel cell vehicles, FCVs; and
plug-in hybrid electric vehicles, PHEVs; and excluding two- and three-
wheelers (IEA, 2018)). In an IEA ‘accelerated EV deployment’ scenario in
which the 2030 sales share of new vehicles would consist of 30% EVs, the EV
stock of light duty vehicles, trucks and buses is expected to reach 228 million
by 2030. In terms of EV market share, the Netherlands and Norway can be
considered at the forefront of the EV revolution with passenger vehicle sales
shares of 2.6% in the Netherlands and near 40% in Norway in 2017 (ex-
cluding light duty vehicles, trucks and buses; EAFO, 2018a; RVO, 2018).
Both countries counted passenger EV stocks of near 110,000 and 190,000 for
Netherlands and Norway respectively at the end of 2017 (EAFO, 2018a).

Interestingly, the Netherlands and Norway have achieved records in EV
sales shares while putting in place very different combinations of incentives
(Figenbaum, 2016; Netherlands Enterprise Agency, 2017; RVO, 2018). The
Dutch government in its coalition agreement of 2017 states to strive in its
policy for having all new cars sold to be zero-emission vehicles (ZEVs) by
2030 latest (Rutte et al., 2017). Based on analyses of these targets for pas-
senger vehicles, the Dutch Environmental Assessment Agency concludes this
would require strong political will at different levels (Koelemeijer et al.,
2017). At the European Union (EU) level, by the means of emission penalties
for manufacturers; and at the national level, by means of financial incentives
for users (Koelemeijer et al., 2017).

The Norwegian parliament has stated a similar goal of having only ZEVs
sold by 2030, and to achieve this goal not through command-and-control
regulation (e.g. sales bans for conventional technologies) but via im-
plementation of the polluter-pays principle (Norsk elbilforening, 2018).
Next to that, the Norwegian transport agencies suggest to have all new
passenger cars and buses sold in 2025 to be ZEVs (Fridstrøm and
Østli, 2016).

Figenbaum and Kolbenstvedt (2013) concluded that the use of EVs is a
possible roadmap to reducing emissions to such an extent that the Norwe-
gian and the EU climate policy goals can be reached. Later research on EVs
and energy policies in the EU reached similar conclusions (Thiel et al.,
2016).

This research analyses the sales shares of new passenger vehicles for the
Netherlands and Norway, and builds on previous modelling work with the
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Powertrain Technology Transition Market Agent Model (PTTMAM)
(Harrison et al., 2016; Harrison and Thiel, 2017a, 2017b; Pasaoglu et al.,
2016). This work particularly builds forward on Harrison and Thiel (2017a),
in which BEVs and PHEVs sales shares in the Netherlands and the United
Kingdom (UK) were investigated. First it extends the considered historical
time frame from 2015 till 2017, and reflects on the appropriateness of
PTTMAM to explain past sales of EVs over this period, with comparing the
2010-2015 period with previous research (Harrison and Thiel, 2017a).
Secondly, it explores possible future scenarios with combinations of three
incentive stimulus: continuing subsidizing EVs, taxing cars based on tail-
pipe emissions, and penalizing manufacturers based on the average tail-pipe
emissions of sold cars. It then shortly compares these future scenarios with
another previous publication with PTTMAM (Harrison and Thiel, 2017b).

Third, by means of loop knock-out analysis dominant structure of the model
is explored to see to what extent it causes sales of EVs in 2030 and 2050 in
the Netherlands and Norway. The reason for focusing here on Norway in-
stead of the UK is that Norway was recently implemented in the PTTMAM,
and the Netherlands and Norway have achieved the highest levels of EVs in
sales shares in Europe. We mainly distinguish between BEVs, PHEVs and
FCVs. With EVs we refer to all three, and with ZEVs we refer only to BEVs
and FCVs (hybrid electric vehicles, HEVs, are not plug-in vehicles, and are
not referred to when EVs are mentioned).

The remainder of this paper is organized as follows: the next section
continues with a literature review, providing more detailed background of
the problem and data that is used in the method. Section 3 shortly introduces
system dynamics, PTTMAM, and the procedures of the three validity tests.

Table 1
Historic EV incentives in Norway and the Netherlands.

Country
Star ng 
year

Powertrain Policy type Details

Norway

1990

BEV

Exemp on on import taxes

Exemp on from registra on costs
Can reach levels of up to 100% on the sales price for 
conven onal cars. (Figenbaum, 2016)

1996 Reduced circula on taxes
50 € in 2016, whereas owners of conven onal cars 
paid fees of 350-410 € annually (Figenbaum, 2016)

1997 Alterna ve incen ves**

None or reduced charges on toll roads, ferries, and 
municipal parking, and allowance on bus lanes 
(assumed parameter: 'subsidies to 
parking/conges on charges' set to 50% in 1997, 
star ng with free toll roads; and to 100% from 1999 
onwards, due to free parking; included in the 
'current incen ves stay' and the 'all incen ves end' 
scenario from sec on 3.3.2 onwards)

2000 Reduced private use tax* 15%  ll 2017, 18% in 2018 (instead of 30%)
2001 Exemp on from VAT

2007 PHEV/BEV Charging infrastructure subsidies**
Governmental incen ves for the deployment of 
home- and public charging infrastructure 
(Figenbaum, 2016)

Netherlands

2010

HEV Reduced registra on costs Also ending 2010

PHEV/BEV
Subsidies for charging 
infrastructure**

Local applica on procedures for free public charging 
infrastructure (assumed parameter: 'electric fuel 
costs', set to 50%  ll 2020; not part of the 
con nua on of incen ves tests from sec on 3.3.2 
and onwards)

PHEV
Reduced registra on costs Also ending 2010

2011

Exemp on from registra on costs Ending 2014

ZEV
Exemp on from registra on costs

Exemp on from circula on taxes
Circula on taxes are high in the Netherlands 
compared to other European countries

PHEV Exemp on from circula on taxes Ending 2016

HEV Exemp on from circula on taxes Ending 2013

ZEV No addi on to taxable income* Ending 2013

2012
PHEV No addi on to taxable income* Ending 2013

HEV Reduced addi on to taxable income* 14%, 21% in 2016, and 22% in 2017

Norway 2013 PHEV Reduced registra on costs 

Netherlands

2013 PHEV/ZEV Local purchase subsidies**

ZEV purchase- and charging infrastructure subsidies 
ranging from 2,500 € to 9,000 € in several 
municipali es (congruent with Harrison and Thiel
(2017a), assumed parameter set to 5,000 €  ll 2016)

2014
ZEV Reduced addi on to taxable income* 4%

PHEV
Reduced addi on to taxable income* 7%, 15% in 2016, and 22% in 2017 

2015 Reduced registra on costs 
*for company owned cars only

**containing large geographical and temporal detail, input parameters are assumed values and o"en simplified
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Section 4 reports and discusses the results of the validation tests. Finally,
Section 5 summarizes the main conclusions from this paper, reflects on the
limitations of this research and discusses potential future research direc-
tions.

2. Literature review

2.1. EV incentives in the Netherlands and Norway

The Netherlands and Norway have known various incentives for sti-
mulating sales of EVs. The incentives reported here are used as updated
input to PTTMAM, discussed in Section 3.2.

Table 1 provides an overview of the incentives discussed here. The de-
tails column provides context, ending years and technical notes on the im-
plementation to the input of the model. Starting from circulation taxes in the
Netherlands, from 2011 Dutch ZEV owners were exempted from circulation
taxes, which are high in the Netherlands compared to other European
countries (ACEA, 2017, 2016, 2015, 2014, 2013, 2011, 2010). The PHEV
circulation taxes were also exempt between 2011 and 2016, and between
2011 and 2013 this was also the case for HEVs.

Since 2011 buyers of ZEVs are also exempt from registration costs. Only
in 2010, HEV purchasers could profit from reduced registration costs. Next
to that, PHEV buyers received a small reduction in registration costs in 2010,
and a full exemption between 2011 and 2014, after which it became a large
reduction since 2015. There was no addition to taxable income for company
ZEVs till 2013, whereas for PHEVs this was only the case for 2012 and 2013.
For company cars including HEVs with emissions below set standards re-
ductions were in place in the percentage addition to taxable income of 14%
at least from 2012 till 2015 (Weekers, 2011). Since 2014 owners of company
ZEV pay 4% addition to taxable income, where company PHEV owners pay
7%. Company PHEV owners pay 15% since 2016. In the same year the
percentage for HEV sales reached 21%, and 22% in 2017 (ACEA, 2017,
2016, 2015, 2014, 2013, 2011, 2010). Since the end of 2013 several mu-
nicipalities have been offering subsidies ranging between 2500 € and 9000 €
on the purchase of ZEVs or personal charging infrastructure
(Netherlands Enterprise Agency, 2017, 2016, 2015).

Since the technology of PHEVs and BEVs is still not as mature as that of
ICEVs, and sales shares are very small, EV buyers can be categorized as
innovators (Rogers, 1962). The historic sales share of PHEVs in the Neth-
erlands, shown in Fig. 3, provides a good example of unexpected develop-
ments in sales due to sensitivity to pricing. In the case of PHEVs in the
Netherlands it was suggested that large proportions of potential buyers made
their purchases in 2013 and 2015 instead of 2014 and 2016, since a possible
end of the incentives was publicly debated (Lévay et al., 2017; Thiel et al.,
2015). In 2017 the financial incentives for PHEVs in the Netherlands became
minimal and consequently the sales shares dropped even further.

As Table 1 shows, Norway has an extensive history of different in-
centives for BEVs, and later also for PHEVs of which the cost effectiveness
and fairness have been debated (Aasness and Odeck, 2015; Holtsmark and
Skonhoft, 2014). The incentives started with an exemption on import tax for
BEVs in 1990 (Figenbaum, 2016). From 1996 till 2016 BEVs had a reduced
circulation tax, which was for example 50 € in 2016, whereas owners of
conventional cars paid fees of 350-410 € annually (Figenbaum, 2016). Since
1990, BEVs were exempt of registration costs, which can reach levels of up

to 100% on the sales price for conventional cars. Since 2013 also PHEVs had
reduced registration costs (Figenbaum and Kolbenstvedt, 2013). Since 2003
BEVs were allowed on bus lanes. Company car tax was halved since 2000,
where the effect for the vehicle owner is dependant on income
(Figenbaum, 2016; Norsk elbilforening, 2018). Since 1997 BEV owners had
various incentives related to charges on toll roads, ferries, and municipal
parking. Moreover, since 2001 BEVs were exempt from VAT, and there have
been governmental incentives for the deployment of home- and public
charging infrastructure. We have not sought for a complete representation of
all incentives that could have influenced a Norwegian vehicle owner at each
year from 1995 till 2017; it was assumed that this information covered the
needed external input for the tests that are performed.

Unintended consequences from toll exemptions and access to bus lanes
were found in reductions in toll revenues and increased travel times for
public transport users (Aasness and Odeck, 2015). It was found that Nor-
wegian EV policy has reduced overall GHG emissions, but it is argued that
this is not easily transferrable to other countries since electricity in Norway
originates largely from renewable energy in the form of hydropower
(Aasness and Odeck, 2015).

Hardman et al. (2017) discussed the effectiveness of purchase incentives
for BEVs and PHEVs. They found that sales tax exemptions, VAT exemptions,
and purchase subsidies are most effective, and that this effect is greater
when the sales tax and VAT are high for ICEVs, which is the case in Norway
and the Netherlands.

Their findings are that (i) distinctions in incentives should be made
between PHEVs with high- and low electric range, where those with high
electric range should receive proportionally higher incentives, as well as
between high- and low-end BEVs, where incentives were found to be more
important for low-end BEVs (Hardman and Tal, 2016; Tal and
Nicholas, 2016); (ii) consumers are not aware enough of the incentives, and
more education and awareness campaigns are recommended; and (iii)
withdrawing incentives too early is hypothesized to have a negative effect
on BEV and PHEV adoption, and as such incentives should be designed for
the long-term. Hardman et al. (2017) also stated that incentives should be
applied at the point of sale, for example by reduction in VAT or registration
costs, or subsidies. Their review is limited to incentives that target the
moment of buying a car and exclude reoccurring or indirect incentives like
the effects of circulation tax, access to infrastructure or free parking. Thus,
no comparison between these types of incentives and incentives at the point
of sale was made in their review.

The incentives in the Netherlands and Norway discussed here do not
reflect policies related to the first four incentives mentioned. Although
policy in the Netherlands does include emission criteria for the different sets
of incentives, for example the purchase tax depending on the CO2 emissions
(Hardman et al., 2017), such detail on incentives is not implemented in the
current analysis. Assumed is that the current model's classification on
powertrains provides enough detail for the analysis.

2.2. Previous modelling work of EV markets in Norway and the Netherlands

Al-Alawi and Bradley, 2013 and Jochem et al., 2017 reviewed studies on
EV adoption modelling and forecasting. Jochem et al. (2017) concluded that
a current trend is visible towards data driven and hybrid-modelling ap-
proaches and suggested that effective modelling exercises need to include

Table 2
Overview of the eight scenarios S1 to S8 and their assumptions.

Scenario Description

S1 Base ‘incentives end 2020′ No incentives are present after 2020
S2 (c) ‘current incentives stay’ Incentives as they were in place in 2017 remain in place
S3 (p) ‘polluter pays’ Step increase in circulation tax based on vehicle emissions at 2020
S4 (e) ‘emission targets’ Manufacturers penalty based on average emissions of yearly sold cars will gradually decrease to reach zero in 2030, starting 2020
S5 ‘c+p’ Current incentives stay and increased circulation tax from 2020
S6 ‘c+e’ Current incentives stay and emission penalties to manufacturers reach zero in 2030 starting 2020
S7 ‘c+p+e’ Current incentives stay, and increased circulation tax together with emission penalties for manufacturers target to zero in 2030 starting in 2020
S8 ‘p+e’ The current incentives end in 2020, but at the same time circulation taxes will be imposed and the target for emission penalties will gradually

decrease to zero in 2030
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both the macro- and micro-level of decision factors, and distinction between
different types of user groups. Al-Alawi and Bradley (2013) argued that
modelling of HEV, PHEV and EV sales shares “should include improved
interfaces with consumer surveys, modelling of automakers’ actions, federal
and state policy and its effect on automotive markets, competition amongst
technologies, market volume, vehicle classifications, and model parameters
sensitivity analysis” (Al-Alawi and Bradley, 2013, p. 1). In this section we
will further focus on specific stock and flow modelling work in relation to
PTTMAM and Norway and the Netherlands.

Harrison and Thiel (2017a) compared the sales shares of powertrains in
PTTMAM scenarios with data from other studies taken from an earlier
modelling study (Pasaoglu et al., 2012), concluding that PTTMAM is gen-
erally conservative in scenarios on sales shares for all powertrains except for
HEVs, and that the relative shares between alternative powertrains is con-
gruent with previous studies.

Another system dynamics model sharing many similarities with
PTTMAM is reported by Keith, Naumov, and Sterman (2017). Sensitivity
analysis with this model shows relatively high HEV and low BEV market
shares compared to PTTMAM. However, since this model captures only the
United States (US) market, it can be argued that making a thorough com-
parison between the outcomes of the two models is not useful, given the
differences between the US and the EU passenger markets.

Fortunately, modelling work for the Netherlands and Norway is also
available. Fridstrøm and Østli from the Norwegian Institute of Transport
Economics make projections based on the ‘BIG’ stock and flow model (BIG
being a Norwegian acronym for vehicle cohort model). Two reported BIG
scenarios for new registrations of passenger vehicles are the ‘trend path’
(trendbanen) and ‘ultra-low emission policy’ scenarios (Fridstrøm and
Østli, 2016). Both scenarios show an increase in sales shares of BEVs, but
only the ‘ultra-low emissions policy’ scenario from 2030 onwards includes
FCVs. FCVs do not appear in the ‘trend path’ scenario, where BEVs are
complemented with PHEVs and HEVs. What is not explicitly stated is whe-
ther BIG includes feedback processes, such as is the case for PTTMAM be-
tween consumers, manufacturers and infrastructure.

A model that contains both the Netherlands and Norway is the ASTRA
(ASsessment of TRAnsport Strategies) model (Fiorello et al., 2010). In an
application of the model, ZEVs are simulated to account for over half of the

EU27 car stock in 2050 under two of the four reported scenarios (Krail and
Schade, 2016). However, to the best of our knowledge, no recent results on
EV market development in these two countries derived from ASTRA are
available in the literature.

More recently, Testa and Bakken (2018) compared scenarios of EV
adoption in Norway and Sweden, concluding that a coexistence of BEVs and
ICEVs is unlikely. Further analysis found that even when all incentives end
in 2020 a transition to BEVs will take place, although the scenario for
reaching zero emission goals by 2050 required at least current policies to be
prolonged. Under an ‘accelerated policies’ scenario a complete transition in
sales to BEVs was established within two decades (Testa and Bakken, 2018).

This paper contributes to the existing future scenarios literature by
constructing eight different scenarios till 2050, which are partially based on
the goals of the Dutch and Norwegian governments and their stated means
for reaching these (see Sections 3.3.2 and 4.2; Norsk elbilforening, 2018;
Rutte et al., 2017). The scenarios focus on policy measures and differ by the
level of ambition of financial incentives and emission targets, and three of
these scenarios are used in policy sensitivity tests. As discussed earlier, the
Norwegian approach is stated to focus on a ‘polluter pays’ principle, instead
of a ban on conventional vehicles (Norsk elbilforening, 2018). The scenario
analysis includes several policies, such as taxes to conventional vehicles
(referred to as Polluter Pays), and emission targets for manufacturers (which
is a step removed from banning conventional vehicles), and tests these in
both countries, by single policies and combinations of policies within the
scenarios (see Table 2).

3. Model-based analysis of the Dutch and Norwegian car markets
using system dynamics

3.1. System dynamics

Pioneered by Jay W. Forrester, system dynamics emphasizes insight to
nonlinear behaviour as result of feedback structure (Forrester, 1961;
Sterman, 2000), and is often applied for comprehensive public policy ana-
lysis or learning through management flight simulators (Forrester et al.,
1976; Keith et al., 2017). A system dynamics model consists of a set of in-
tegral equations, in which so called ‘stock’ variables represent the state of

Fig. 1. PTTMAM causal loop diagram (part 1 of 2).
Note: Stocks are indicated by boxes. Variables appearing in both
CLDs represent the same equation; all incoming arrows to one
variable together make up the equation of that variable (e.g.
Attractiveness is a function of five variables: Choice, Performance
Metrices, Environmental Impact, displayed in Fig. 1, and of Po-
pularity and Convenience, shown in Fig. 2).
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the modelled system by “accumulating or draining over time”. Simulated
behaviour is due to -and described from the perspective of- feedback loops,
communicated through causal loop diagrams (CLDs) (cf. Section 3.3.3). A
CLD often consists of three elements: 1) the causal connections, shown as
arrows between variables, 2) causal polarity, and 3) singled out re-
presentations of feedback loops (indicated by either a positive/reinforcing
loop denoted R or a negative/balancing loop denoted B). In part of this work
a previous model diagram, published by Harrison and Thiel (2017a), is used
for constructing two CLDs that provide a high level overview of the full
model structure, representing 15 reinforcing and two balancing loops, later
used for feedback loop knock-out analysis.

3.2. Model description and extension

We used PTTMAM, a system dynamics model of the EU vehicle market
implemented in Vensim (Ventana Systems Inc, 2018). In PTTMAM, the in-
teractions of four market agents (Users, Manufacturers, Infrastructure Pro-
viders and Authorities) are captured via decision rules and feedback loops,
of which the latter two are depicted at high-level overview in Figs. 1 and 2
(appendix A.2 provides more detailed diagrams and indication of the four
market agents). The model includes various subsets such as 29 countries,
two vehicles classes (passenger and light commercial, of which only the first
is considered in this research), three vehicle sizes, three types of users: (i)
private, (ii) fleet (company owned cars) and (iii) public (national and local
government owned cars), four classes of vehicle age, eight types of fuel, and
amongst others, 16 types of powertrains: Petrol ICEV, Diesel ICEV, LPG
ICEV, CNG ICEV, Biodiesel ICEV, Bioethanol ICEV, Petrol HEV, Diesel HEV,
Biodiesel HEV, Bioethanol HEV, Petrol PHEV, Diesel PHEV, Biodiesel PHEV,
Bioethanol PHEV, BEV and FCV. For an exhaustive description of PTTMAM,
we refer to Harrison et al. (2016). Previous applications of the model can be
found in Pasaoglu et al. (2016) and Harrison and Thiel (2017a). An earlier
version of the model (excluding Norway) is available at: https://ec.europa.
eu/jrc/en/pttmam.

For the purpose of this analysis, we extended PTTMAM by modelling for
the first time Norway. As a result, the current version of the model contains
29 European countries. Though the Norwegian experience with EVs pre-
dates 2007, the model assumption that BEVs do not become commercially
viable before 2007 was, for simplicity, retained. Besides this, also the EU

regulation for manufacturers emission targets remained active in its effect
on marketing efforts. Here it is also for simplicity assumed that manu-
facturers act similarly in Norway as they do in EU countries. As a first step, a
database for Norway was created. The sources of Norwegian data were
(EAFO, 2018b; Figenbaum, 2016; Norsk elbilforening, 2018;
Ntziachristos et al., 2008; Papadimitriou et al., 2013; SSB, 2018;
United Nations, 2015).

Thanks to a greater availability of reports on incentives, the input for the
model was improved compared to previous publications for the Netherlands
(Harrison and Thiel, 2017b, 2017a). The incentives as described in
Section 2.1 have all been implemented and different formulations of mod-
elling consumer choice have been tested by means of a ‘demand kick’.
Harrison and Thiel introduced the demand kick as follows: “the market
share determined by the user group could be influenced by ‘demand kicks’
from subsidies and exemptions. This demand kick is a calibrated multiplier
of market share over the period that the incentive is in place, the value of
which is determined by a sensitivity of a base demand kick to the magnitude
of the subsidy/exemption. This characteristic did not originally include the
circulation or registration tax exemption” (Harrison and Thiel, 2017a, p. 5).
The same authors summarize the demand kick elsewhere as “[subsidies in
place] can lead to increased marketing of the powertrain by manufacturers
and a demand kick over and above the standard utility as users are aware of
the offer being in place, and possibly short-lived” (2017b, p. 168; referring
to the ‘combined utility’ as depicted in Figs. 1 and 2).

The results from testing different formulations of consumer choice by
means of a demand kick are described in Section 4.1, and the final model
structure including the demand kick is shown in Figs. 1 and 2. After iterative
testing as described in Section 4.1 an extended demand kick formulation was
arrived at. This formulation is partially deployed in the second test for the
policy sensitivity plots in Section 4.2, here both an active and a completely
deactivated demand kick are used in sampling for constructing the scenarios
in Figs. 4 and 5 where it becomes more evident that the effect of the demand
kick is negligible when comparing future scenarios to 2030 and beyond. The
extended formulation is fully used in the third test with loop knock-out
analysis (where each of the loops in Figs. 1 and 2 are once deactivated).

Although the purpose of the PTTMAM is understanding the general and
long-term dynamic of a transition towards new powertrains, and not for
explaining early adopters behaviour, Harrison and Thiel (2017a) provide

Fig. 2. PTTMAM causal loop diagram (part 2 of 2).
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scenarios that came close to reproducing the actual shares of new sales of
BEVs in the period of 2010 to 2015 in the UK and the Netherlands, when
financial incentives in these countries were implemented in the model. The
actual shares of new sales were in the region of 0.02%-0.7% of sales for the
Netherlands and 0.06%-0.4% for the UK, such that the adopters can be
considered as innovators (Rogers, 1962). In Norway the share of new sales
for BEVs until 2008 has not been greater than 0.1%, hence this research has
not attempted to explain the sales of BEVs in Norway before this time and
retains the PTTMAM's original assumption that BEVs have not become
commercially viable before 2007.

The current version of PTTMAM computes the user purchase decisions
based on a standard multinomial logit choice framework, which is well
described in the exploratory policy analysis paper by Harrison and
Thiel (2017b). The resulting market share is assumed to be influenced by
‘demand kicks’ from subsidies and exemptions (Harrison and Thiel, 2017a,
p. 5), which was already partially described in Harrison and Thiel and the
technical report (Harrison et al., 2016). An optimization procedure was used
to provide the demand kick parameters for non-ZEVs and ZEVs in the
Netherlands and Norway with historically most accurate market shares
during the years that the incentives have been in place (see the procedure
followed in the behaviour reproduction test described in Sections 3.2.1 and
4.1). Eqs. 1 and 2 in Section 4.1, together with the equations in the before
mentioned publications (Harrison et al., 2016; Harrison and Thiel, 2017b),
provide an exhaustive description for the formulation that is used in this
paper. In effect, the users purchase decision for the Netherlands differs from
Harrison and Thiel (Harrison and Thiel, 2017a) by a more detailed external
input on incentives, and a single demand kick structure that distinguishes
amongst both PHEVs and BEVs for the different temporary strengths of the
effects of incentives.

3.3. Validation tests

The system dynamics literature highlights several aspects of model va-
lidity and proposes a series of validation tests. Distinctions are made be-
tween several types of validity such as structural, behavioural, empirical and
application validity (Barlas, 1996; Barlas and Carpenter, 1990;
Bossel, 2007). A comprehensive list of validation tests can be found in
Table 21-4 in Sterman (2000). In this paper, we focus on empirical validity
and assess model behaviour by carrying out three types of tests: behaviour
reproduction, sensitivity analysis and behaviour anomaly tests in the form of
loop knock-out analysis. The results of these tests are summarized in Section
4.

The outcome measure of the tests will be the sales shares of ZEVs in
Norway and the Netherlands in 2030 and 2050. This outcome measure was

decided based on the willingness of both governments to have this sales
share increased to 100% by 2030. Besides that, for validation tests and
completeness of the outcomes both 2030 and 2050 values are reported, since
some feedback effects are shown to be amplified or diminished between
2030 and 2050 in the different scenarios. Moreover, the scenarios show that
greater sales shares are unlikely to be apparent by 2030 and could rise faster
till 2050.

3.3.1. Test 1: behaviour reproduction test
The purpose of the behaviour reproduction test is to determine the

correspondence of model output with the observed behaviour of the relevant
system variables. In practice, this is done by computing descriptive statistics
and iterative testing (Oliva, 2003; Sterman, 2000).

The fit to historical data has been visually judged in previous work by
Harrison and Thiel (2017a). Their policy analysis on PHEVs and BEVs in the
Netherlands and the UK starts out with a base scenario without any in-
centives as external input (Harrison and Thiel, 2017a). Tests with many
different scenarios based on simple external inputs of incentives led to im-
proved model settings for reproducing historical behaviour (we refer to
scenarios NL_14 and NL_15 for BEVs and PHEVs in the Netherlands in
Harrison and Thiel, 2017a). Where these authors performed their analysis
over 2010 and 2015, we found in early tests that replicating their scenario
settings did not provide a similar fit for 2016 and 2017 for the Netherlands.
Moreover, availability of information on the diversity in incentives that had
been present for both PHEVs and BEVs is currently more detailed than it was
when Harrison and Thiel (2017a, 2017b) conducted their analysis. Aiming
for a near point by point prediction, the external inputs have been improved
and are currently set as described in Section 2.1.

The original model settings did not provide a satisfactory fit with his-
torical data after improvement of the external inputs, so an iterative process
of testing different model formulations, together with automated calibration
for the parameters was conducted. The goal of automated calibration was to
test whether the derived parameter settings are congruent with what we
know about the system (Oliva, 2003). Different formulations have been re-
jected based on fit to historical behaviour and feasibility of the parameters.
The feasibility was judged according to whether the calibrated parameter
was at one of the limits of the range or not. The pre-set ranges for the
parameters were set between 0.1 and 7, as to stay consistent with earlier
practice (Harrison et al., 2016).

Norway and the Netherlands had good information availability on pur-
chase incentives and sales shares of BEVs and PHEVs. This availability was a
requirement for the calibration procedure, similar to earlier practice for
Sweden (Harrison et al., 2016). During the iterative process the ‘demand
kick’ was calibrated to account for the rapid and short-lived effects of in-
centives (Harrison et al., 2016, see also Sections 3.2 and 4.1).

To compare the model fit to historical behaviour and identify potential
improvement, Theil's inequality statistics are reported. Theil's inequality
statistics decompose the mean square error (MSE) amongst three compo-
nents: (UM), error due to bias; (US), unequal variation between the simu-
lation and the data; and (UC), unequal covariation (Bliemel, 1973;
Sterman, 1984; Theil, 1966, 1965).

Oliva (2003) mentions that Theil's inequality statistics do reveal sys-
tematic errors in model formulation but are ineffective in diagnosing the
output of automated calibration procedures, since these hide the error in the
calibrated parameters. Since the demand kick externally controls for in-
novators behaviour (Rogers, 1962), and potential model improvements
would likely focus on endogenously explaining this type of behaviour, the
Theil's inequality statistics are here applied to the scenarios in which the
demand kick is not active. In contrast to model improvement, to compare
the final scenario of the Dutch BEV and PHEV sales shares over 2010-2015
with those in the previous publication of Harrison and Thiel (2017a), the
calibrated values for the demand kick were used to compare the best fitting
scenario's by means of the Theil's inequality statistics (see also the two
sections within Table 3).

3.3.2. Test 2: policy sensitivity
Three main types of sensitivity analysis tests are found in the system

Table 3
Theil's inequality statistics indicating fit to historic behaviour.

Statistics over 2010-2017, with deactivated demand kick; for future model
improvement

R2 Bias Variation Covariation

Norway PHEVs 0.93 0.31 0.68 0.01
Norway BEVs 0.94 0.48 0.47 0.05
Netherlands PHEVs 0.07 0.20 0.25 0.55
Netherlands BEVs 0.93 0.07 0.17 0.75

Statistics over 2010-2015, with active demand kick, for output comparison with
improved input for incentives and updated demand kick formulation

R2 Bias Variation Covariation

Netherlands BEVs 0.89 0.23 0.42 0.35
Netherlands BEVs

(Harrison and
Thiel, 2017a)*

0.98 0.57 0.01 0.42

Netherlands PHEVs 0.60 0.19 0.22 0.59
Netherlands PHEVs

(Harrison and
Thiel, 2017a)**

0.55 0.02 0.00 0.98

compared to the scenarios *NL_14 and **NL_15
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dynamics literature: numerical, behavioural and policy. Policy sensitivity
tests are performed by keeping the policy parameters which make up the
scenarios constant and adjusting those parameters that are most sensitive
and uncertain (Sterman, 2000). Compared to extensive exploratory policy
analysis for the EU, including 24 scenarios with different infrastructure
subsidy policies, also by Harrison and Thiel (2017b), this test reports on only
eight scenarios, with simpler assumptions (an overview of the eight sce-
narios is provided in Table 2). We add to the previous work of Harrison and
Thiel (2017b) by policy sensitivity plots that include dynamic confidence
bounds accounting for part of uncertainty in various parameters: for ex-
ample by varying the assumptions on costs reduction through learning ef-
fects, and the year FCVs become available (see Table A.2 in the appendix;
variables where the policy scenarios influence the model are portrayed in
appendix A.2).

Besides a base scenario (S1), three types of policies are tested for their
effects on sales shares (the single policies and combination of policies that
are tested in the Dutch and Norwegian contexts are here referred to as in-
centive scenarios): S2 ‘current incentives stay’ (shortly indicated with the
letter ‘c’), S3 ‘polluter pays’ by circulation tax starting in 2020 (indicated
with the letter ‘p’), and S4 ‘emission targets’ reach zero in 2030 for manu-
facturers (indicated with the letter ‘e’). The S2 (c) ‘current incentives stay’
scenario assumes that all incentives as used in the base scenario at time 2017
stay present and unchanged till 2050 (see Section 2.1 for the incentives that
have been present in 2017). The S3 (p) ‘polluter pays’ scenario is derived by
an average percentage increase of circulation taxes for users with vehicles
whose emissions are greater than the average. The assumption in the S3 (p)
‘polluter pays’ scenario is a policy that will penalize higher-emission vehicles
and adapt as the average emissions fall. To create one ‘polluter pays’ sce-
nario the average percentage increase of circulation taxes for Norway and
the Netherlands was derived by a simplistic but clear rule of thumb: testing
which round percentage of circulation tax increase would result in around
4% increase in ZEVs sales share in 2030, provided this is the only policy
incentive in place. To reach this in the model, the external input for average
percentage increase of circulation taxes had to be set on 250% in the
Netherlands, and 500% in Norway starting 2020. Norway's circulation tax is
several times lower than in the Netherlands, so encouraging potential buyers
and owners for a switch to a vehicle with less tailpipe emissions needs a
higher percentage increase. These average percentage increases imply an
even greater increase for the most polluting vehicles, but a smaller or no
increase for little and non-polluting vehicles in the model.

The S4 (e) ‘emission targets’ scenario is parametrized such that the
compliance target of 95 g CO2/km (European Parliament and Council of the
European Union, 2014), is lowered gradually to zero in 2030, starting with a
target value of 50 g CO2/km in 2023, and decreasing yearly with 10 between
2026 and 2030. This encourages R&D spending for reducing tail-pipe
emissions and marketing spending for sales of low emission vehicles.

A list of PTTMAM's most sensitive parameters can be seen in Annex II of
Harrison et al. (2016). For uncertainty around FCVs and battery packs for
EVs (Schmidt et al., 2017), four other parameter values are included which
are recognized to include a high degree of uncertainty: “Cost Reduction
Fraction From Learning”, for the parameters BEV battery, Hydrogen Storage
Tank, and Fuel Cell System, between 0.1 and 0.5; and the “Year Powertrain
Becomes Available”, for the parameter FCV between 2020 and 2030. Finally,
uncertainty around the effects of the demand kick are accounted for by
structural variance; sampling the parameter value of the variable “Active
Demand Kick” with either on (1) or off (0). The dynamic confidence bounds
for policy sensitivity are generated based on 1000 simulation runs with Latin
hypercube sampling over the parameter space specified in Table A.2. As
such, this test is to some extent congruent with the practices of Exploratory
Modelling and Analysis, where there is an emphasis on dealing with un-
certainty through exploring parametric variations, structural variations, and
different non-linear lookup functions (Kwakkel and Pruyt, 2013). Table A.2
shows mostly parametric variations, whereas sampling from both an active
and inactivate demand kick represents a structural variation.

Inspired by the Norwegian and Dutch governments’ goals of reaching
high ZEVs sales shares by 2030 (Norsk elbilforening, 2018; Rutte et al.,
2017), the incentive scenarios ‘polluter pays’ and ‘emission targets’ have

rather extreme model input settings. Such extreme parameter settings are
mentioned to be useful in assessing dominant structures during loop knock-
out analysis (Sterman, 2000).

3.3.3. Test 3: loop knock-out analysis
Loop Knock-out, or Loop Deactivation Methods have been used for ex-

ploring dominant structure in models (Duggan and Oliva, 2013). According
to Groesser and Schwaninger (2012), a model of which the microstructures
are already validated can be validated on the meso level, to grasp the effect
of ‘multiple dynamics’. One of the ways of doing this is through loop knock-
out tests. The tests employed here originated in the works by Richardson and
Ford (Ford, 1999; Richardson, 1986). Keijser et al. (2012) concluded that
Ford's loop deactivation method is unsuitable for large models, mainly when
exhaustively targeting all loops. Although nowadays formal assessment
methods are available in automated toolsets (Naumov and Oliva, 2018)
these do currently not yet support models with arrays, which PTTMAM
adopts plentifully. In this paper, a pragmatic approach is taken by only
knocking out the 17 loops telling by the two CLDs, one at a time, and re-
porting the effects on ZEVs sales shares in 2030 and 2050. Groesser and
Schwaninger (2012) suggest invoking control variables to deactivate feed-
back relationships by which the impact of the still active structure on the
behaviour can “easily be traced and evaluated” (p. 165). The CLDs in Figs. 1
and 2, based on the high-level overview published by Harrison and Thiel
(2017a, p. 3), were the bases for selecting loops and locations for where to
invoke control variables (Table A.3 provides an overview of the equations
that are used for loop deactivation, and the red rectangles in appendix A.2
give a visual overview). The results of this analysis are scenarios in which a
loop is inactive, and these are reported by showing the relative change in
sales share compared to the base scenario, answering the question: “What if
this feedback effect would not be in place?”. Due to the size of PTTMAM, this
is merely an attempt to explore the relative effects of parts of the model
structure in two specific points in time, and does not intent to reveal the
actual dominant structure in certain time frames which is usually aimed for
in these types of tests (Oliva, 2016).

4. Results and discussion

4.1. Test 1: behaviour reproduction test

The automated calibration procedure together with testing different
model formulations went through an iterative process (see A1). The final
formulation calibrated 24 parameters (see Table A.1) for the demand kick,
where the original formulation would have calibrated 12 for two countries.
A further distinction from the original demand kick was arrived at by in-
voking different parameters for ZEVs and PHEVs and for the effect of access
to bus lanes for BEVs in Norway, resulting in Eqs. 1 and 2 (together with the
previous publications of Harrison et al., 2016 and Harrison and
Thiel, 2017b, these provide a complete overview of the current formulation
for the sales shares).

=

+

Market Share Adjusted for Incentives active demand

kick*

(1 active demand kick)*

P, C

EU Vehicle Market Share *smoothed total demand kick for subsidies effect
(EU Vehicle Market Share *smoothed total demand kick for subsidies effect )

EU Vehicle Market Share
(EU Vehicle Market Share )

P

P

P, C P, C
P, C P, C

P, C
P, C (1)

Eq. (1): Market share adjusted for incentives for powertrain P in country
C. The variable ‘active demand kick’ only assumes the values 0 or 1, for
comparing runs with and without demand kick, and sampling over both in
Section 4.2.

=
+

+

total demand kick for subsidies effect

demand kick from running costs subsidies
demand kick from subsidies

demand kick from access to bus lane

P, C

P, C

P, C

P, C (2)

Eq. (2): The unsmoothed effect of incentives affecting the running costs,
the purchase costs, and the effect from access to bus lanes (only in Norway)
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for powertrain P in country C.
The calibration was found to have little effect on the PHEVs and BEVs

sales shares behaviour towards 2030 and 2050 compared to an inactive
demand kick. More than half of the parameters ended at the limits of the
range (0.1 or 7), and for several parameters a similar fit at multiple values
was reported (see Table A.1 for the calibrated parameters). Although this
was not in line with feasibility of the parameters, a last calibration was
performed with wider intervals. This barely improved the historic fit over
2010-2017, neither did it have a visual effect on the scenarios till 2030 and
2050.

Fig. 3 shows the historical development of PHEVs and BEVs in Norway
and the Netherlands over 2010 till 2017, compared to simulations with the
final demand kick formulation and a simulation with the demand kick in-
active. These results are strong evidence that the current endogenous model
structure does not provide a fully satisfactory explanation of early adopters
behaviour, neither does the current formulation of the external structure in
the form of the demand kick.

The output of the final automated calibration procedure points at a high
level of model uncertainty with regards to the effects of incentives. This
model uncertainty is accounted for in the policy sensitivity tests, by showing
dynamic confidence bounds in Figs. 4 and 5 including both runs with the
calibrated parameters (an active demand kick), and runs without the cali-
brated parameters (not active demand kick). Although, as mentioned before,
the calibrated parameters in the final formulation were found to have little
effect on the sales shares of ZEVs in the Netherlands and Norway between
2030 and 2050.

The Theil's inequality statistics from comparing the simulation of a de-
activated demand kick with the actual historic data are reported in the upper
part of Table 3. The statistics point out that the simulated EV market share,
which excludes the short lived ‘kicks’ from financial incentives, has a bad fit
with historic data of Norway since 2014 for BEVs and from 2015 onward for
PHEVs. The statistics show that the error for Norway is concentrated in bias
and variation. The error in bias indicates that parameter adjustments could

correct for this, which is visible in the calibrated demand kick simulation.
However, the error in variation can be due to abstractions from reality in the
model assumptions.

In contrast, the bias and variation error in PHEVs in the Netherlands is
smaller, but visual inspection and the low R2 indicates that the model be-
haviour does not explain the oscillatory behaviour which can be due to
factors not captured in the model. The simulated behaviour of BEVs in the
Netherlands without demand kick barely differs from the calibrated active
demand kick; and the statistics indicate that only a small portion of the error
is concentrated in bias or variation, which could indicate that error is mainly
due to unsystematic noise.

The lower part of Table 3 reports the statistics with an active demand
kick to compare with the best scenarios in the previous publication of
Harrison and Thiel (2017a). It shows that with respect to PHEVs it does
slightly better, which was expected since a large part of the improvements of
the input on incentives were related to PHEVs. Moreover, the new demand
kick formulation differentiates between ZEVs and PHEVs, whereas the pre-
vious formulation did not. In contrast, for BEVs the current scenario per-
forms worse. The demand kick was calibrated to reflect the best possible fit
between 2010 and 2017, and since the sales share of BEVs in 2016 and 2017
deviates substantially from the 2010-2015 period, the worse fit is reasoned
to be caused by the automated calibration procedure in which the payoff for
a better fit on 2016-2017 compensates for the slightly worse fit on 2010-
2015. Two differences between the NL_14 scenario for BEVs in Harrison and
Thiel (2017a) and the standard model assumptions in this paper have been
in place, and were considered out of the scope of this research. First, the
registration costs are accounted as fixed costs in NL_14, which spreads them
out over the expected years that the first owner keeps the vehicle, instead of
being part of the purchase price. The second difference is that the registra-
tion and circulation tax are not part of the demand kick for BEVs in NL_14,
such that the temporary kicks from these taxes do not appear. These dif-
ferences in assumptions could explain the differences in the model fit with
actual historic behaviour, and perhaps put a different light on how future

Fig. 3. Model fit to historical data, with and without calibration.
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model formulations could be tested. In any case, these results indicate that
part of the innovators behaviour in Norway and the Netherlands is un-
satisfactorily predictable with the current model formulation. Although, as
can be seen in the second test, this is of little consequence for most of the
sales shares scenarios till 2050 (where PHEVs in Norway is the greatest
exception).

4.2. Test 2: policy sensitivity

The results of the policy sensitivity tests are reported in Table 4, which
provides the numerical results for all eight scenarios. Figs. 4 and 5 show
dynamic confidence bounds in behaviour over time plots for PHEVs and
ZEVs in the Netherlands and Norway for three of the eight scenarios.

The results of the scenarios for ZEVs sales shares (and the proportion of
which is FCVs) in 2030 and 2050 are provided in Table 4. Table 4 also shows
the scenarios S5 to S8, which are combinations of incentive scenarios S2 to

S4.
The results in Table 4 show that none of the tested scenarios reaches a

2030 ZEVs sales share that satisfies the targets of the Netherlands or
Norway. Only the combination of all three incentive scenarios reaches a
ZEVs sales share over 50% for 2030. Moreover, only the scenarios in which
manufacturers emission targets reach zero in 2030 make it to a significant
transition towards ZEVs by 2050. That regulatory CO2 emission targets
weigh heavy in sales shares for EVs, and in particular for FCVs, was also
concluded from the previous work by Harrison and Thiel for the EU (2017b).

The findings for Norway differ from those in the scenarios by Testa and
Bakken (2018), since a transition which fulfils zero emission goals is not
reached by 2050 when current incentives stay. This could be due to the
difference in incentives, such as the option in PTTMAM to impose emission
targets on manufacturers.

In the ‘polluter pays’ scenario it is contradicting to expectations that the
large increases in circulation tax would result in a meagre effect on ZEVs

Fig. 4. Netherlands policy sensitivity plots for PHEVs and ZEVs under scenarios S5, S6 and S7.
Note: S5, S6 and S7 assume more drastic policies to get effect after 2020 (polluter pays starts 2020, and the effects of emission targets become visible around 2023),
hence there are relatively lower adoption rates during 2018-2020 than could perhaps be expected by the reader. The black line indicates the mean value of the 1000
simulation runs. Note that the outer grey area (100%) is limited to the uncertainty space explored within this analysis.
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sales share (portrayed by the total cost of ownership in Figs. 1 and 2, but
circulation costs are not part of a feedback loop, and thus not represented in
these diagrams). This could point at an insensitivity to the financial attrac-
tiveness of vehicles in the model, which was also suspected in the first test
related to the effects of subsidies. Nevertheless, it is reasonable that an in-
crease in circulation tax for polluters can increase the sales share of ZEVs,
therefore this scenario is kept as part of the further analysis.

Figs. 4 and 5 show policy sensitivity plots for the S5, S6, and S7 com-
binations of policy scenarios. Although the policy scenarios c, p and e only
take effect after 2020, the sampling space as provided in Table A.2 is active
already from 2018. These dynamic confidence bounds show that there is
greater confidence in reaching a ZEVs sales share of over 50% by 2030 when
a combination of all these three policies is in place. The S5 scenario shows
that a full transition to ZEVs has not taken place till 2050 when only relying
on current incentives and emission taxes to vehicle owners. The S6 scenario
comes very close to the S7 scenario, but the ZEVs sales share is much more
likely to stay below half of the total sales at 2030, whereas in the S7 scenario
it is in more than 75% of the simulations over half of the total sales.

When a rapid transition to zero emission vehicles is the aim, the S7
policy set shows the most promising results for 2030 and 2050. The tested

difference between the S8 and S7 scenario (see Table 3) shows that keeping
the current incentives provides a major difference for the 2030 targets.
Moreover, Figs. 4 and 5 show that in the S7, ‘current incentives stay’- sce-
nario a greater number of simulation-runs reaches a zero emission vehicles
sales share above 50%, compared to the S5 and S6 scenarios in which most
of the simulations stay below 50% in 2030.

The sales shares for PHEVs show a much greater uncertainty in Norway
than in the Netherlands. In the Netherlands each scenario of PHEVs sales
share is at any time below 40%, whereas in Norway this could be between 0
and 70%. Driving with two motors, as is the case with plug-in hybrid ve-
hicles, is unnecessary, but the uncertainty of the speed at which batteries
improve together with the not-well understood effects of current incentives
(including recent PHEV subsidies in Norway), amongst others, evolved here
in the widened confidence intervals pictured in Fig. 5.

4.3. Test 3: loop knock-out analysis

For exploring relative effects of feedback loops, each indicated loop
portrayed in Figs. 1 and 2 was deactivated. The impact on ZEVs sales shares
are reported in Table 5. This section discusses the differences in the effects of

Fig. 5. Norway policy sensitivity plots for PHEVs and ZEVs under scenarios S5, S6 and S7 (note of Fig. 4 equally applies).
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Table 4
Sales shares in 2030 and 2050 for ZEVs and which part is FCVs for the eight scenarios S1 to S8.*.

Table 5
Results of loop knock-out analysis*.
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the feedback loops, and the change in these effects between the S1, ‘in-
centives end 2020′ base scenario and the combined incentive scenario of S7,
‘current incentives stay’, ‘polluter starts paying in 2020′, and ‘manufacturers
emission targets reach zero by 2030′.

The results in Table 5 show that deactivating loop R3b, the Indirect
Word-of-Mouth Effect, results in an increased ZEV sales shares under the
base scenario ‘incentives end 2020′. This indicates that, when no incentives
are in place, the indirect word-of-mouth effect is comparatively a large in-
hibitor of a transition away from current powertrains. This is in line with
expectations, since potential buyers have the propensity to make the same
decisions as whom they know, and new innovations are not easily adopted
by the majority, especially when their face value -the value without calcu-
lating for all the possible subsidies- is less financially attractive, and the
performance metrics (like range) are below what is used to. What was un-
expected was the fact that the indirect word-of-mouth effect turned out to be
comparatively stronger than the direct word-of-mouth effect. Conceptually
this could suggest that the effect of two persons discussing a vehicle type
they both do not own is stronger than the effect of one of them owning such
a vehicle type (Struben and Sterman, 2008).

Eight feedback loops are found not to affect the ZEV sales share with
more than 2%: R2b, Scale Effect; R4, Popularity Effect; R5b, Maintenance
Network Convenience Effect; R5c, Maintenance Network Competition
Effect; R6, Consumer Choice Effect; R7, Environmental Consciousness Effect;
R8a, Attractiveness from Performance Effect; and R8b, Convenience from
Performance Effect. Except for loop R2b, Scale Effect, the other seven
feedback loops mentioned are all direct or indirect inputs to the
Attractiveness variable. It could be that in reality these feedback loops do
have stronger effects on the consumers choice, but that the loop knock-out
analysis shows that these are comparatively underrepresented in the current
model formulation. However, when the current formulation does sa-
tisfactorily represent reality, these Attractiveness indicators could be of less
influence than was formerly assumed in recent work (Hoen and
Koetse, 2014; Jensen et al., 2014; Struben and Sterman, 2008). It must be
noted that the scenario analysis excludes any incentives related to infra-
structure and maintenance networks, which could put the effects of these
loops in a different light. Also unexpected is the comparatively small effect
of the loop R2b, Scale Effect, since the benefits of scale are reasoned to bring
a substantive decrease of the unit production costs, and subsequently should
decrease car prices such that sales shares can rise.

In contrast, deactivating feedback loop R8c, Technology Maturity Effect,
results in the biggest decrease in ZEV sales shares. The results in Table 5
show that the composition of the strongest feedback loops changes from the
base scenario to the combination of incentive scenarios. The strongest in-
hibitor of transition to ZEVs without any incentives, the indirect word-of-
mouth effect, becomes far less important in the combined incentives sce-
nario. Moreover, the Technology Maturity Effect (R8c) plays a stronger role
till 2030, but less on the longer term till 2050. The Penalties Raise Purchase
Price Effect (R9) has a comparatively small inhibiting effect when incentives
are absent but becomes strong and positive in its effect on ZEV sales shares
till 2050 in the case of combined incentives.

The feedback loops R2a, Learning Effect, and B1, Marketing to Prevent
Penalties Effect, show a significant inhibition of the transition to sales of
ZEVs in 2030, and this effect in 2050 is still comparatively the largest (al-
though small in absolute change in sales share). The 17% difference by 2030
in Norway was unexpected. This could have been caused by the contra-
dictory stimuli present in scenario S7, in which both PHEVs remain in-
centivized (PHEV incentives were recently put in place in Norway), but
manufacturers are starting to be more penalized based on average emissions
from sold cars. This pushes manufacturers in the model to market PHEVs in
early stages, which undermines the uptake of ZEVs in later years. Also, this is
in line with the broad uncertainty envelop pictured in Fig. 5. However, since
penalties for manufacturers only apply in EU member states, and not in
Norway, it is uncertain how this effect plays out.

Most of the feedback loops have less effect in the combined incentive
scenario in 2050 compared to the base scenario. This shows that in the
combined incentives scenario the dynamics of the transition are less influ-
enced by feedback loop effects within the market, compared to when the

market is not subjected to regulatory interventions. Generally, these results
can be interpreted such that tax and subsidy incentives, together with pe-
nalties remain necessary for a transition to occur in both Norway and the
Netherlands.

5. Conclusions and future research

The Netherlands and Norway both have a unique history with the use of
EVs and the incentives that have been in place (Figenbaum, 2016;
Netherlands Enterprise Agency, 2017; Norsk elbilforening, 2018;
RVO, 2018). The governments of both countries have pledged targets for
2030 of only zero emission vehicle sales (Norsk elbilforening, 2018;
Rutte et al., 2017). Given their history and the available data, combined
with current high sales shares of EVs and the future targets, these countries
are of special interest to analysis, and the insights and pitfalls are potentially
transferrable to other contexts.

In this research the system dynamics model known as PTTMAM was
extended to include Norway - the global leader in the electric car market
when measured in sales market share - and updated to include recent in-
formation on incentives in the Netherlands and Norway. The model was
subjected to further validation tests: behaviour reproduction, policy sensi-
tivity and loop knock-out analysis, including an outlook on future scenarios.

The main findings from the behaviour reproduction test are: (i) when
comparing the results for the Netherlands to Harrison and Thiel (2017a), the
historic fit in terms of R2 worsens for BEVs but improves for PHEVs; and (ii)
the current model structure does not explain adequately early adopters be-
haviour.

For the purpose of the policy sensitivity test, eight scenarios were con-
structed and analysed, complementing those reported by Harrison and
Thiel (2017b). By accounting for parametric variance in fourteen highly
uncertain variables and using structural variance by the means of sampling
both with the demand kick activated and deactivated, we find: (i) con-
firmatory evidence that stringent CO2 emission targets have a crucial impact
on ZEV uptake; and (ii) that the small impact the large emission taxes have
in the ‘polluter pays’ scenario casts doubts on the formulation of the effect of
financial attractiveness.

The main findings from the loop knock-out analysis are: (i) the reduction
in the costs of components is comparatively the strongest feedback effect
when no incentives are in place; and (ii) it is confirmed that the variables
combined in attractiveness do not currently have a large impact on the
uptake of ZEVs in the model. The latter touches upon a point previously
highlighted by Pasaoglu et al. (2016), namely the need to improve the way
users’ choice is modelled.

We conclude from our simulations that, given the current speed of the
transition, it is unlikely that all new passenger cars sold in 2030 will be ZEVs
in the Netherlands and Norway. However, there is the potential to reach
near 100% in 2050, with over 50% sales shares of ZEVs by 2030, under the
conditions that strong incentives in the forms of penalties for manufacturers
that do not meet emission targets (or self-directed transition to ZEVs) and
emission taxes for consumers come in place, likely to be accompanied with
continued financial incentives to make a transition financially possible for
consumers and manufacturers over the coming 30 years.

Drawing on the policy sensitivity analysis, the best-case scenarios for the
Norwegian and Dutch governments’ 2030 targets are the policy simulations
that include at least (i) a manufacturers emission target of zero emissions by
2030, and either (ii) the continuation of current incentives, or (iii) emission
taxes to car owners. Still then the targets are only potentially met by 50%
ZEVs sales share and are likely to be lower according to the analysis.
Reaching beyond 50% becomes much more likely when all three policies are
included, whilst keeping the manufacturer's emission targets and stopping
current incentives, or not imposing any emission taxes on car owners, makes
it more likely that 50% will not be reached by 2030.

Future research could explore the proportions and sensitivity of in-
centives that stimulate the market to transfer earlier and more rapidly by
2030 further, which could show what is needed to draw nearer to the
Norwegian and Dutch governments’ 2030 targets before 2030 has passed.
However, the current set of tested incentives contains (i) a 2030 target for
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zero emissions of manufacturers vehicle sales (which implies that manu-
facturers must pay penalties on vehicles that do have emissions, but can still
be sold), and (ii) already proportionally large financial incentives.
Nonetheless, contradicting the current analysis, the 2030 targets might still
be approximated more closely or reached in the future due to factors that
must be addressed in further research. In the meantime, the targets provide
guidance for reducing vehicle emissions, for less severe effects on human
health and climate change (Hoek et al., 2013; Künzli et al., 2000;
Lorenzoni and Pidgeon, 2006; Parry et al., 2007; Woodcock et al., 2009).

Doing further tests in comparing these countries can identify more of the
structure that is responsible for the different effects. Differences in outcomes
from the loop knock-out analysis could form the input for recommended
exercises like parameter sensitivity analysis or consumer surveys (Al-
Alawi and Bradley, 2013). Notably, the unexpected outcome on the indirect
word-of-mouth effect (recall Section 3.3.3) and the fact that this differs for
Norway and the Netherlands can be subjected to further testing in future
research for model improvement and insight in the real-life processes.

Next to that, similar to the different future policy scenarios in this paper,
the differences between the two countries with respect to their historical
developments can be explored by ‘altering history’ tests in future research.
Furthermore, insights from these differences can then be subjected to ana-
lysis on what extent these keep hold in scenarios differing from the
Netherlands and Norway, testing the potentially transferability to other
countries in future research, similar to Harrison and Thiel (2017a), who
implement policies tested in the Dutch and UK settings in other European
countries in PTTMAM.

Implementing Norway made several gaps of the model come to light.
Norway has a relatively long history of BEVs with the first experiments of
industrial development in 1989, and the first financial incentive being an
exemption from registration tax starting as early as 1990
(Figenbaum, 2016). Also, the context of BEVs in Norway differs from EU
countries with respect to the allowance of driving on bus lanes and the re-
duced or exempt fees for toll lanes and the use of ferries. For the allowance
of driving on bus lanes a new external variable that stimulates direct market
uptake was implemented as part of the demand kick. Although this variable
has been part of the automated calibration procedure there is still a large
uncertainty to the change in numerical settings for this effect. Moreover, the
early years of BEVs in Norway were characterized by the actions of con-
sumer groups influencing policy makers for introducing incentives and
keeping them in place (Figenbaum, 2016). Furthermore, it has been sug-
gested that part of the people who purchased an EV, did not purchase the EV
to replace an existing vehicle, but as an extra car for short distance trips
(Holtsmark and Skonhoft, 2014). At its current state, PTTMAM does not
model explicitly purchases of an extra car.

Future research on vehicle market modelling, adaptations on PTTMAM,
and policy design should also take note of the recommendations by
Hardman et al. (2017), Hardman and Tal (2016), and Tal and
Nicholas (2016): (i) distinguishing between PHEVs with high- and low

electric range, analysing the effects when high electric range receives pro-
portionally higher incentives; (ii) distinguishing between high- and low-end
BEVs, with incentives that are focused on the low-end BEVs; (iii) considering
consumers awareness, which is congruent with our suggestion that im-
proving replication of the 2010 to 2017 historic period potentially benefits
from more accurate modelling of different groups of consumers and their
awareness of incentives; and, finally, (iv) that withdrawing incentives too
early can have a negative effect on BEV and PHEV adoption, and policy
design should take a long-term perspective.

As a result of the validation tests, two main specific areas where the
behavioural assumptions of the model may be improved are identified: (i)
incorporating additional variables representing factors that might influence
choice (e.g. public policy discussions that lead to hastened purchase deci-
sions (Lévay et al., 2017)); and (ii) replacing the current users’ choice for-
mulation with one supported by empirical evidence (the implementation of
a statistical model based on a survey amongst European car owners
(Gómez Vilchez et al., 2017) is currently underway). In addition, further
research is needed to understand the effectiveness of incentives for EV
purchase and translate this into the model.

In line with previous research (Harrison and Thiel, 2017b), we found
that certain powertrain technologies can lock-in, in which high levels of
PHEVs adoption in earlier stages results in lower sales shares of ZEVs later. A
similar phenomenon could be present between FCVs and BEVs. PHEVs are
reasoned to be a stepping stone for the transition towards ZEVs, useful in
consumer acceptance of electric charging and for cost reductions in the
production of batteries, but less attractive once BEV range substantially
increases, for example when lithium-ion battery energy density continues to
improve (Turcheniuk et al., 2018; Zubi et al., 2018). Finally, and since the
Netherlands and Norway also have ambitious FCV plans
(European Commission, 2017; Norsk elbilforening, 2018), further research
on the market prospects of this powertrain technology is needed.
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Appendix

A.1. Iterative process of formulation and automated calibration for alternative demand kick structures to externally approach the effects of (financial) EV
incentives in the Netherlands and Norway

For the first formulation we started with a mostly complete external input for the several incentives that had been in place for Norway and the Netherlands.
Next to that we rejected the notion of the demand kick, based on the reasoning that the effects of incentives could have their impact through the variables that
make up the function of the combined utility. A non-linear analytical function as used in the demand kick was inserted to the variables that are part of the
combined utility function. Then automated calibration was used to find optimal values for these parameters, with the sales shares of PHEVs and BEVS in
Norway and the Netherlands between 2010 and 2017 being the payoff variables. Automated calibration to the external input was also performed in the
original model with the demand kick, given that good information on alternative powertrain subsidies and resulting demand should be available
(Harrison et al., 2016), which is the case for Norway and the Netherlands. The results did not yield a better visual fit with historical values for any of the four
payoff variables.

Based on the reasoning that the combined utility for PHEVs and BEVs could have different parameter values, since range anxiety applied to BEVs but not to
PHEVs, we proceeded with a second formulation in which the parameters are separately calibrated for BEVs (ZEVs) and PHEVs. This second formulation did
also not result in a near fit with historical values, and it was reasoned that the markets in Norway and the Netherlands both react different. The third
formulation calibrated the parameters for both countries separately, this time a good fit with historical values was the result, however the calibrated values
were on the limits of the pre-set ranges. Whilst expanding the ranges the parameters reached levels beyond what could be consistent with common sense,
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Table A.1
Current values of the automated calibrated parameters (pre-set range of 0.1 to 7).

Variable name Current value

base subsidies for demand kick[Netherlands] 7.00
base subsidies for demand kick[Norway] 0.61
sensitivity of demand kick to subsidies[Netherlands] 0.10
sensitivity of demand kick to subsidies[Norway] 1.05
base demand kick for subsidies[Netherlands] 0.10
base demand kick for subsidies[Norway] 0.73
base subsidies for running cost demand kick[Netherlands] 3.73
sensitivity of demand kick to running costs subsidies

[Netherlands]
0.95

base demand kick for running costs subsidies[Netherlands] 0.80
base effect of access to bus lane demand kick[Norway] 7.00
sensitivity of demand kick to effect of access to bus lane

[Norway]
0.10

base demand kick for effect of access to bus lane[Norway] 0.10
ZEV base demand kick for running costs subsidies[Netherlands] 0.10
ZEV base demand kick for running costs subsidies[Norway] 0.10
ZEV base demand kick for subsidies[Netherlands] 0.10
ZEV base demand kick for subsidies[Norway] 0.26
ZEV base subsidies for demand kick[Netherlands] 7.00
ZEV base subsidies for demand kick[Norway] 5.88
ZEV base subsidies for running cost demand kick[Netherlands] 7.00
ZEV base subsidies for running cost demand kick[Norway] 5.83
ZEV sensitivity of demand kick to running costs subsidies

[Netherlands]
0.10

ZEV sensitivity of demand kick to running costs subsidies
[Norway]

0.64

ZEV sensitivity of demand kick to subsidies[Netherlands] 0.10
ZEV sensitivity of demand kick to subsidies[Norway] 0.99

Table A.2
Sample space for the Latin hypercube sampling used in multivariate Monte Carlo analysis for policy sensitivity.

Variable name, subscript, distribution and range
initial base unit production cost[Petrol ICEV,Small]=RANDOM_UNIFORM(6000,10,000)
annual change in passenger importance of criterion[Environment,Fleet,Urban]=RANDOM_UNIFORM(-0.05,0.5)
annual change in passenger importance of criterion[Environment,Private,Urban]=RANDOM_UNIFORM(-0.05,0.5)
reference minimum price differential for wtc=RANDOM_UNIFORM(0,0.25)
initial powertrain utility[Diesel ICEV,Medium,Environment]=RANDOM_UNIFORM(0.5,0.8)
annual change in passenger importance of criterion[Choice,Fleet,Urban]=RANDOM_UNIFORM(-0.05,0.5)
annual change in passenger importance of criterion[Popularity,Fleet,Urban]=RANDOM_UNIFORM(-0.05,0.5)
annual change in passenger importance of criterion[Popularity,Private,Urban]=RANDOM_UNIFORM(-0.05,0.5)
initial base unit production cost[Petrol HEV,Small]=RANDOM_UNIFORM(6000,10,000)
annual change in passenger importance of criterion[Choice,Private,Urban]=RANDOM_UNIFORM(-0.05,0.5)
active demand kick=VECTOR(0,1,1)
cost reduction fraction from learning[BEV battery]=RANDOM_UNIFORM(0.1,0.5)
cost reduction fraction from learning[Hydrogen storage tank]=RANDOM_UNIFORM(0.1,0.5)
cost reduction fraction from learning[Fuel cell system]=RANDOM_UNIFORM(0.1,0.5)
year powertrain becomes available[FCV]=RANDOM_UNIFORM(2020,2030)

Table A.3
Equations used for loop deactivation (when ‘sw [loop name]’ set to 1: loop active, 0: loop knocked-out).

Loop Equation for Deactivation

R1 Marketing Effect marketing effort from sales forecast = min(1, ZIDZ((("country long-term forecast sales share"[Country,Powertrain]*sw R1)),base
sales for marketing[Country])^sensitivity of marketing to forecast sales share)

R2a Learning Effect strength of learning curve = LOG(1-cost reduction fraction from learning[Component]*sw R2a, 2)
R2b Scale Effect effect of economies of scale on costs = min(max economies of scale effect on costs,"production / economies of scale"(EU powertrain

production capacity[Powertrain]/base powertrain production capacity for economies of scale)* max economies of scale effect on
costs*sw R2b)

R3a Direct Word-of-Mouth Effect EU Direct Exposure to Powertrain = (EU frequency and effectiveness of direct contacts between drivers and powertrains
[Country]*sw R3a)*EU Willingness to Consider Powertrain[Country,Current Powertrain,Powertrain]*EU Powertrain Proportion of
Vehicle Stock[Country,Powertrain]*average cost impact on wtc in country[Country,Powertrain]

R3b Indirect Word-of-Mouth Effect EU Indirect Exposure to Powertrain = sum((EU frequency and effectiveness of non direct contacts between drivers and powertrains
[Country]*sw R3b)*EU Willingness to Consider Powertrain[Country,Current Powertrain!,Powertrain]*EU Powertrain Proportion of
Vehicle Stock[Country,Current Powertrain!]*average cost impact on wtc in country[Country,Powertrain])

R4 Popularity Effect EU powertrain popularity = min(1,((ZIDZ(EU Powertrain and Size Proportion of Vehicle Stock[Country,Powertrain,Vehicle
Size],base prevalence for popularity)^sensitivity of popularity to prevalence[Country])*sw R4))

R5a Infrastructure Convenience Effect effective infrastructure modifier for EU powertrain convenience = min(1,(ZIDZ((actual EU power train effective infrastructure
[Country,Powertrain]/Percent),reference effective infrastructure)^ sensitivity of convenience to effective infrastructure
[Country])*sw R5a)

R5b Maintenance Network Convenience
Effect

effective maintenance network = "base maintenance convenience, OEM only"+(min(1,sw R5b*"% Non-OEM maintenance network
serving powertrain"[Country,Powertrain]/("reference maintenance/repair network"*Percent))) * (1-"base maintenance
convenience, OEM only")

(continued on next page)
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besides that it yielded unexplainable scenarios for the PHEVs and BEVs sales shares behaviour towards 2050.
A fourth attempt returned to the use of the original demand kick formulation, siding with the argumentation as provided in the technical report that the

model offers a difference between the underlying market share and “temporary “kicks” as a result of incentives offered by authorities and/or manufacturers.
The available data suggests this influence is rapid (very little delay between incentive and resulting increase in demand) and short-lived (ending soon after the
incentives are removed)” (Harrison et al., 2016, p. 33). This formulation did also not yield a good fit for neither PHEVs nor BEVs in both Norway and the
Netherlands. Finally, a closer fit was found in a sixth formulation that calibrated these parameters also independently for PHEVs and ZEVs, described and
discussed in the main text.

A.2. PTTMAM CLDs with market agent-related variable classification and knock-out edge

Figs. 6 and 7.

Table A.3 (continued)

Loop Equation for Deactivation

R5c Maintenance Network Competition
Effect

"Maintenance/Repair Costs" = "Base Maintenance/Repair Costs"[Powertrain,Vehicle Size]* ((1 - "Maintenance/Repair Costs
Reduction from competition"[Country,Powertrain,Vehicle Size])*sw R5c)

R6 Consumer Choice Effect EU attribute value[Choice] = min(1,powertrain technology availability[Powertrain,Vehicle Size]*sw R6)
R7 Environmental Consciousness

Effect
marketing influence on importance of environmental impact = min(1,(SMOOTH(reference multiplier of importance of
environmental impact*("low-emission marketing"[Country]/"reference low-emission marketing")^"sensitivity of importance of
environmental impact to low-emission marketing",marketing effect on environmental importance smoothing period))*sw R7)

R8a Attractiveness from Performance
Effect

EU attribute value [component criteria] = (if then else(component criteria=Convenience,EU convenience criterion
[Country,Powertrain,Vehicle Size],if then else(component criteria=Environment,EU emissions performance[Powertrain,Vehicle
Size],(min(1,powertrain utility value[Powertrain,Vehicle Size,component criteria]*sw R8a))))*powertrain commercially available
[Powertrain])

R8b Convenience from Performance
Effect

EU convenience criterion = min(1, (min(1,powertrain utility value[Powertrain,Vehicle Size,Convenience]*sw R8b))*effective
infrastructure modifier for EU powertrain convenience[Country,Powertrain,Vehicle Size]*effective maintenance network
[Country,Powertrain])

R8c Technology Maturity Effect base component cost = sw R8c*initial component cost[Component,Vehicle Size]*component maturity cost
modifier[Component]+(1-sw R8c)*initial component cost[Component,Vehicle Size]

R9 Penalties Raise Purchase Price
Effect

emissions penalty as fraction of revenue = ZIDZ(Max(sum(sw R9*Forecast EU Excess Emission Premium[Vehicle Class!]),EU Excess
Emission Premium),total EU revenue); Additional costs from emissions premiums = ZIDZ((sw R9*EU Excess Emission
Premium*epbe*relative excess emissions[Powertrain]),EU powertrain Manufacturer Sales[Powertrain])

B1 Marketing to Prevent Penalties
Effect

forecast emissions penalty influence on additional marketing = ((emissions penalty as fraction of revenue*sw B1)/base emissions
penalties for marketing)
^sensitivity of marketing to emissions penalties

B2 R&D to Prevent Penalties Effect "powertrain R&D stimulus for manufacturers to reduce CO2 emissions" = sum(sw B2*Forecast EU Excess Emission Premium[Vehicle
Class!]) * ZIDZ(powertrain potential environmental improvement[Powertrain], sum(powertrain potential environmental
improvement[Powertrain!]))

Fig. 6. PTTMAM CLD part 1 of 2 with loop knock-out places (red) and market agent (background).
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