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Despite fifty years of new traffic policies and research, intoxicated driving is still a 

leading cause of death and injury in the United States. Intoxicated crashes accounted for 31% of 

road fatalities in the United States in 2014.1 Most policy efforts to combat drunk driving have 

been punitive, impeding access to alcohol or increasing drunk driving’s cost for violators. For 

example, state laws raised and then standardized the drinking age at 21 in the mid 1980s across 

U.S. states. “Dry counties” and “blue laws” restricted the sale of alcohol based on place or time, 

though research in health economics has demonstrated that banning the sale of alcohol in a 

county does not necessarily suppress drunk driving.2 Alcohol price increases through excise 

taxes increased the cost of drinking, decreasing alcohol consumption and by extension, drunk 

driving.3 State laws sought to define the line between sober and intoxicated driving by imposing 

differential penalties at higher blood alcohol content (BAC) levels, and zero BAC laws for 

minors.4 Some state laws instituted immediate license suspension, or differential license 

suspension for those caught driving under the influence of alcohol or drugs.5 Lawmakers failed 

to mandate ignition locks following research on the efficacy of physically restricting intoxicated 

1 In 2014, the FARS dataset contains 32,675 road fatalities nationwide, and 9,967 road fatalities from alcohol-related 
collisions. Department of Transportation (US), National Highway Traffic Safety Administration (NHTSA). Traffic 
Safety Facts 2014 data: alcohol-impaired driving. Washington, DC: NHTSA; 2015. 
2 Lovenheim and Slemrod (2010) examine the drinking-age law evasion cost of heterogeneous state drinking age 
laws. Dee and Evans (2001) and Carpenter and Dobkin (2011) give an overview of the effect of increasing the 
drinking age nationwide. Baughman et al (2001) show that allowing the sale of beer and wine may reduce the drunk 
driving toll in a county, though the sale of hard liquor increases drunk driving. 
3 Grossman and Saffer (1987) are the first of many authors to exploit the variation in various alcohol prices, 
especially through excise taxes, to measure price elasticities for youth road fatalities.  Increases in alcohol prices 
cause decreases in alcohol consumption and binge drinking. Decreases in alcohol consumption lead to fewer adverse 
consequences of drinking, including drunk driving fatalities.  
4 Dee (2001) indicates that setting a 0.08 BAC as the limit between intoxicated and sober driving was effective in 
reducing road fatalities from drunk driving. Carpenter (2004) shows that zero tolerance (zero BAC) limits for minors 
produce no robust drunk driving effects for either gender.  
5 Benson and Ramussen (1999) examine several policies that potentially deter drunk-driving infractions. Evans, 
Neville and Graham (1991) show that an increase in putative punishment severity (rather than increase in probability 
of detection) produces no measurable decrease in drunk driving.  
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drivers’ car access, though vehicle use is the resolvable variable after intoxication is certain.6 No 

laws have sought to make the lawful vehicle-use alternative to drunk driving more attractive. 

A recent increase in the ease and availability of alternative rides for intoxicated 

passengers partially explains the steep decrease in alcohol-related collisions in New York City 

since 2011. I examine the specific case of Uber’s car service launch in New York City in May 

2011, a unique example of a sudden increase in cab availability for intoxicated passengers.7  This 

study draws on a dataset of all New York State alcohol-related collisions maintained by the New 

York State Department of Motor Vehicles from 1989 through 2013. My inference is based on the 

variation in Uber access across New York State counties over time and the careful choice of New 

York State counties that provide an appropriate control group for New York City’s drunk-driving 

behavior. 

My econometric analyses show that each of the New York City boroughs that 

experienced significant Uber service coverage (Manhattan, the Bronx, Brooklyn, and Queens) 

experienced a 25-35% decrease in its alcohol-related collision rate using difference-in-

differences estimation and standard errors clustered at the county level. My most conservative 

estimate of this intent-to-treat (ITT) effect implies a decrease of approximately 43 crashes per 

month across the New York City boroughs with Uber coverage, based on pre-period collision 

rates and population.  

																																																								
6 Coben and Larken (1999) estimate that interlock devices reduce DUI recidivism between 15% and 65% during the 
period of observation in their study.  
7 Uber is a service that matches cab drivers and passengers with a smart-phone app and a location-based matching 
algorithm. Passengers pay through the smartphone app with previously submitted credit card details, and are emailed 
a receipt after the ride. Drivers are summoned to the passengers GPS location unless the passenger specifies a street 
address. Compared to street-hail taxis or livery taxis, Uber is particularly innovative tool for an intoxicated or 
disoriented passenger: they need not carry or acquire sufficient cash for a taxi ride, and the ride can be summoned to 
a precise GPS location. A general overview of Uber’s purpose circa 2011 (near the time of Uber’s introduction in 
NYC) can be found in Wired (http://www.wired.com/2011/04/app-stars-uber/).  
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The main challenge to inference rests on the choice of which control group constitutes a 

valid counterfactual to New York City before and after the introduction of Uber. The 

determinants of drunk driving are not well understood, but are generally unobservable in this 

dataset (i.e.: probability of getting caught, cost of punishment, cost of alcohol, availability of 

alcohol, family or peer attitudes towards alcohol, and age of the driver) or are observable but not 

(or nearly not) time-varying (i.e.: number of bars or liquor stores in the county). Instead I choose 

control counties based on geographic location, population density, and similarity of a county’s 

pre-Uber drunk driving rate to New York City’s drunk driving rate.  

Supporting the robustness of these difference-in-differences estimates, I run a placebo test 

by choosing a random intervention date in the pre-period. While some effects are significant at 

the 5% level, small changes in the specification of the estimating equation lead to lack of 

significance and in some cases a change in the sign of the effect. The standard difference-in-

differences estimates embody an average effect over all the New York City boroughs that 

received Uber access. To examine the county-by-county effects, I also estimate separate 

treatment effects for each treated borough. I find that Uber’s entrance produced larger effects for 

Manhattan, middling effects for Brooklyn and the Bronx, and smaller effects for Queens. This 

runs counter to the expected effects if the average ITT difference-in-differences estimates were 

evenly distributed over the population of each affected borough. This distribution suggests that 

Uber’s launch did not simply fill in neighborhoods underserved by existing public transit. 

I produce evidence of the dynamic effects on each affected borough both in in a 

differences-in-differences model and through synthetic control analysis. The post-Uber yearly 

treatment effects in a differences-in-differences framework show an effect that grows over time, 

which fits a consumer-learning or fleet-expansion story. Separate synthetic control estimates for 
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each borough similarly show a large period of decrease in drunk driving rates in the year after 

Uber’s launch date in New York City, but those effects taper off by the end of the sample period 

in 2013. To test the robustness of the synthetic control estimates, I produce a permutation test 

(Abadie et al 2010) to show that the affected New York City boroughs experienced an extreme 

drop in their alcohol-related collision rate, compared to all synthetic control estimates that could 

be produced with any other New York State county. 

While many economists have used taxi datasets to examine labor supply and industrial 

organization topics, this paper contributes to the drunk-driving policy literature in health 

economics as one of the first to examine Uber’s effect on drunk driving in the cities where it 

operates.8 The discussion of this effect in the context of New York City is advantageous because 

cab access is not novel, only heterogeneously distributed (Grynbaum 2011, Wellington 2014). 

This study borrows from the literature on transit choice, which typically weighs public 

transportation options (train, bus, subway) against driving as a joint decision with housing 

choice; Uber constitutes an additional transit option that is particularly suited to circumstances 

when an individual requires transportation while intoxicated.  

 

1. Mechanism 

Uber’s New York City launch in May 2011 marked the introduction of a new transit mode 

that has a different collection of characteristics than the other available modes. In the context of 

McFadden’s discrete choice models for transit demand, Uber represents a reduction in potential 

																																																								
8 See Camerer et al. (1997), Chou (2002), Farber (2015), and Farber (2005) for taxi drivers’ intertemporal 
substitution of labor hours. Frechette, Lizzeri and Saltz (2015) model the taxi market as perfectly competitive with 
regulation and search frictions, with drivers who behave as independent profit -maximizers with prices set by the 
regulator. Greenwood and Wattel (2015) examine the effect of the Uber rollout across localities in California on 
motor vehicle homicide. 
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waiting times for customers, and a potential reduction in the cost of rides over medallion taxis.9 

The Uber transit mode is also characteristically easier to use than cabs, bus, and subway for trips 

whose purpose is alcohol consumption or whose timeframe is late at night. McFadden 

characterizes urban travel demand as a derived demand stemming from the destination and 

purpose of the trip, implying that consumers who value Uber’s transit characteristics higher will 

substitute to Uber rides from other transit modes after the introduction of the service in order to 

fulfill their trip needs (McFadden 1974, p. 304). This study does not examine the long-run 

decisions of the consumer with regard to travel demand and transit mode (residential location or 

automobile ownership) that might result from the Uber launch in New York City. Instead, this 

study will show the short-run effect on drunk driving outcomes given Uber access. 

A few mechanics of the Uber service allow for varying wait times and prices relative to 

medallion taxis. The market regulator continues to cap the number of medallion street-hail taxis 

in New York City, but does not restrict the number of Uber drivers in the city, allowing for an 

increase in drivers to meet short-term demand spikes. Medallion taxi drivers must adhere to 

posted prices set by the regulator and may not adjust prices based on an observed increase in the 

quantity of cab rides demanded. In contrast, Uber ride prices may fluctuate from day to day or 

hour to hour. Analysis of medallion taxi trip data has verified the large dip in taxi supply at the 5 

o’clock PM taxi shift change. Medallion taxi drivers transfer their cabs to the next driver at the 

same time that potential riders begin to leave work. Uber has taken steps to recruit off-duty 

drivers at peak cab demand times using the pricing mechanism.10 

The health economics literature has not addressed a specific determinant of drunk driving: 

the cost of obtaining safe travel between locations, conditional on intoxication. If the regulator 

9 See McFadden (1975), Chapter 3 for a framework for consumer choice behavior applied to travel demand. 
10 See Cramer and Kruger (2016) on surge pricing and the efficiency of Uber in the context of the taxi market.	
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fixes the taxi fare, wait time for a customer takes on the features of a price mechanism. As street-

hail taxis are one of the few markets in the developed world where suppliers and consumers must 

physically search to find a match and complete a transaction, customers must wait longer for a 

ride at high customer-demand times rather than paying higher prices (Flechette, Lizzeri, and 

Saltz, 2016). A smart phone app-hail system may thus increase the information that both driver 

and passenger have about the location of potential transaction partners. This increase of 

information decreases search frictions in terms of reduced wait time and effort required to secure 

a ride for customers.  

In addition to the cost measured in wait time, Uber may also address the increased difficulty 

of cognitive functions after drinking. Navigation, uncertainty, and the necessity of completing 

arithmetic may generate higher costs when intoxicated. A rider may summon an Uber ride to her 

physical location using GPS rather than navigating an unknown neighborhood to hail a cab or 

communicating on the phone with a cab dispatcher using a street address. Updates on the GPS 

location of her driver may be a valuable assurance that a cab has actually been dispatch, unlike 

the experience with phone dispatched or street hail taxis. The rider also need not retain enough 

cash for a ride home through Uber or calculate tip. In this context, the May 2011 Uber launch 

marks the beginning of a period of differentially-lower ride costs for intoxicated consumers in 

terms of price, wait time, and ease-of-use.  

 

2. Data 

Data on all alcohol-related crashes in New York State are available from the New York 

State Department of Motor Vehicles (NYS-DMV) and Department of Transportation (NYS-
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DOT).11 For my analysis, I use data from collisions that occurred from January 2007 through 

July 2013. This period includes Uber’s entrance into the New York market in May 2011, allows 

for a substantial pre-intervention period, and omits two potentially confounding entrances in the 

New York City transportation market that could influence the alcohol-related collision rate. The 

first entrance occurred in August 2013 as New York City introduced a new form of taxi 

medallion to serve only the “outer boroughs” of Brooklyn, Queens, the Bronx, Staten Island, and 

northern Manhattan. These “boro” taxis were painted green rather than the typical yellow 

medallion taxis, and banned from picking up in lower Manhattan, where most street-hail yellow 

taxi rides originate. The second entrance occurred in July 2013 as Uber launched coverage in the 

Hamptons (Suffolk County) for summer weekends only with a massive publicity stunt offering 

helicopter rides from New York City to the Hamptons. Omitting Suffolk County from the 

analysis does not significantly change the results, supporting the suspicion that this initial launch 

of coverage was slow to provide significant coverage and did not do so in July 2013.  

A collision’s inclusion in the NYS-DMV alcohol-related subsample implies a police 

officer determined that alcohol was one of the causes of the collision. Each record contains 

detailed information about the logistics of the collision, including the jurisdiction, but no 

personal information about the drivers (or passengers, pedestrians, and cyclists) involved. I 

transform the collision-level data into monthly alcohol-related collision counts by county. 

County-level aggregates and monthly frequency is preferred since the Uber launch in this study 

occurs at the county level (rather than state or neighborhood) in May 2011. The full estimation 

sample contains 4,526 observations of monthly data in 62 New York State counties, five of 

which are New York City boroughs, from January 2007 through July 2013.  

																																																								
11 The data set obtained from NYS-DMV for this study spans January 1989 through December 2013. For my 
analysis, I trim the data to a historically relevant period around the entrance of Uber in New York City.  
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In this study I use alcohol-related collision counts to measure the effect of Uber’s 

introduction on drunk driving. Other studies have used alcohol-related automobile fatalities from 

the publicly available FARS (Fatal Accident Reporting System) dataset, which includes 

information on alcohol involvement.12 The set of all fatal, alcohol-related collisions is a subset of 

all alcohol-related collisions in New York State. Using the larger set of alcohol-related collisions 

provides enough observations to estimate effects using county aggregates at monthly frequency.  

While the NYS-DMV data contains information about the location of the collision, it 

does not contain information about the home addresses of people involved in the collisions (nor 

does FARS). In this study, I make inferences linking the car-owning population of a county and 

the number of collisions in that county. It may be that the driver in a collision is not a resident of 

the county in which they collided. I do not make this distinction for statistical purposes: random 

measurement error in the dependent variable does bias the estimates of the treatment variable. 

This study’s result may have implications for state and local government, however, so I 

emphasize that the outcome variable is alcohol-related collisions in a county scaled by the 

number of resident vehicles in that county. I do not imply that local governments’ choice to let 

Uber operate directly reduces the health outcomes of taxpayers residing in that locality; rather I 

observe the frequency of collisions occurring in counties where Uber does and does not operate. 

This assumed connection between drivers and county populations is made similarly or left 

unaddressed in most of the drunk driving literature. 

To gauge the potential for collisions, I use information on yearly counts of registered 

vehicles by county, provided by the NYS-DMV. These counts are broken into subgroups by 

vehicle type and I use only the standard automobile registrations (rather than taxis, heavy trucks, 

																																																								
12 For examples of studies that use FARS to examine policy changes see Dee (2001), Benson, Ramussen (1999), 
Grossman (1991), or Lovenheim and Slemrod (2010). Also note some authors in this area produced their own fatal 
collisions data by state for within-state county-level comparative case studies, as in Baughman (2001). 
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farm equipment, or motorcycles).  Using registration counts to form county alcohol-related 

collision rates (as alcohol-related collisions per 100,000 registered vehicles) produces an 

outcome variable that is less driven by the large differences in population between counties in 

New York. This vehicle-based measure is also more pertinent to the public health of drivers than 

the public health of all residents, who may travel only by subway or train.  

While unsuited to my dynamic measure of drunk driving, resident population can be used 

to form a county population density measure to indicate highly urban counties. The New York 

State Department of Labor publishes population statistics and land area in square miles at the 

county level, which I use to calculate a monthly state population and monthly state population 

density by interpolation.  

Finally, the popular press has reported on the entrance of non-medallion taxi companies 

like Uber in major cities in the United States and Uber produces press releases before most 

expansions into new territory on its website.13 From these articles, blog posts, and press-releases 

describing the transit markets in New York City, I have constructed a timeline to determine when 

Uber entered the New York City market, and when similar services launched that might 

potentially confound the estimation of an Uber effect on drunk driving.  

I use alcohol-related collisions per 100,000 standard vehicles rather than per 100,000 

residents in this study to correctly frame the public health question, because relatively few NYC 

residents are car owners and drivers. As an example, in 2010 the Bronx, Brooklyn, Queens, and 

Manhattan had a combined 7,623,628 residents, but only 3,052,853 standard vehicle driver’s 

licenses and 1,518,763 standard car registrations (see Appendix 1 for summary statistics by 

county). I also use this measure because this it varies less among New York State counties than 

the per-capita measure. To see the wide variation in alcohol-related collisions in levels, Figure 1 
																																																								
13 Chokkotu and Crook (2014) 
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presents a shaded map of New York State. Similar to the variation in Figure 1, variation in per 

capita collisions would reflect only the great differences between NYC and non-NYC counties’ 

populations. Figure 2 shows the car-registration based collision rate, with many New York State 

counties displaying a similar 2010 level to New York City.  

 

3. Difference-in-Differences Estimation 

In order to estimate the effect of Uber on drunk driving, I designate certain New York 

State counties as treated by the intervention and I designate other New York State counties as a 

control group. Based on newspaper articles and press releases, this study considers the Bronx, 

Brooklyn, Queens and Manhattan as treated, but not Staten Island (Richmond County). In the 

earliest data period that is available, Staten Island’s Uber pickup count was an order of 

magnitude smaller the other New York City boroughs. Table 1 contains summary statistics from 

the Uber dataset that highlight this disparity in pickups between Staten Island and the rest of the 

New York City boroughs. Corroborating the impression that Uber operated at much lower 

volume on Staten Island than elsewhere in New York City, Uber launched a publicized 

expansion campaign in the summer of 2015, including driver incentives to attempt an increase in 

coverage on Staten Island.14  

Figure 3 plots treated versus untreated New York State counties over time. The treated 

series is the average alcohol-related collision rate for treated New York City counties, omitting 

Staten Island as it does not receive sufficient Uber coverage. The untreated series is the average 

alcohol-related collision rate of all other New York State counties. The introduction of Uber in 

May 2011 is indicated with a black vertical line. While the noisiness of the data makes it difficult 

																																																								
14 For news coverage of Uber’s new incentives in July 2015, see (http://www.ny1.com/nyc/staten-
island/news/2015/07/28/uber-expands-staten-island-service-using-driver-incentives.html) 
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to visually distinguish small trends, there is a divergence in these two series in the post-May-

2011 period.  

Figure 4 plots each of the treated counties’ alcohol-related collision rates individually 

over time. Each county shows a large drop in its alcohol-related collision rate after the 

introduction of Uber, but it is also apparent that the four counties’ alcohol-related collision rates 

converge over time. This may reflect the proportion of the population with a lower reserve price 

than the Uber price, or it may reflect some stable proportion of the population that eschews 

public transit when intoxicated regardless of price or mode characteristics.  

Identification of the estimated intent-to-treat effect relies on variation in Uber access before 

and after the Uber launch in May 2011, between counties where Uber service was substantial and 

the counties where it was not. This analysis uses only New York State counties as potential 

control counties for the New York City boroughs. New York State introduced a state-wide law to 

target repeat offenders of drunk driving in September 2012. This law made it more difficult for 

violators with multiple drunk driving offenses to relicense after their driver’s licenses were 

revoked.15 Because the new law came into effect in all New York State counties simultaneously, 

I use non-NYC New York State counties, rather than Connecticut or New Jersey counties, as part 

of a control group to help identify the effect of the Uber launch.  

The difference-in-differences estimates are produced using four different control group 

specifications based on different criteria exogenous to the intervention. For the first control 

group, I use all possible control counties to minimize information loss. This specification 

includes all 58 New York State counties that are not part of the treatment group. Not all counties 

in the control group may be good counterfactuals for New York City counties, however, and this 

																																																								
15 See this summary of the changes to New York State Vehicle and Traffic Laws from the Office of the Governor of 
New York: https://www.governor.ny.gov/news/governor-cuomo-announces-regulations-protect-new-yorkers-
dangerous-drivers. 
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specification may inflate the treatment effect based on fundamental differences between counties 

that vary over time rather than the effect of the intervention. Motivated by this concern, I form 

three additional control groups for comparison. For the second control group, I select the ten 

New York State counties that are geographically close to New York City. Counties that are 

physically close together may share common population characteristics and common trends in 

drunk driving behavior. These counties are within the feasible commuting radius of New York 

City, and many share common behaviors as members of the same metropolitan area. Third, I 

select the ten most densely populated New York State counties using 2006 census data. Urban 

centers may differ from rural areas in terms of road conditions, traffic levels, and behavioral 

norms of alcohol consumption. New York City’s counties (boroughs) are the most densely 

populated in the state, and this density-based specification is motivated by the differences 

between the state’s urban communities and rural communities that may be poor counterfactuals 

for each other despite their similar laws and climate. Fourth, I select counties based on average 

alcohol-related collision rates between 2009 and 2010. The four treated New York City boroughs 

are evenly spaced throughout the distribution of drunk driving rates for this period. To create the 

control group in this specification, I select eight total counties: the counties with the closest value 

above and below each treated county’s alcohol-related collision rate value.16  

Using these four control group specifications, I estimate the following difference-in-

differences model, where the unit of analysis is county-months.  

!"!" = !! + !!!! + !!!! + !! !"#$! × !"#$%#&! + !!" (1) 

CR is an alcohol-related collision rate constructed using county-level registered vehicle 

counts within a given month, X is a matrix of county fixed effects that control for time-invariant 

																																																								
16 I did not pursue a cohort of cities approach as in Card (1997). Gathering monthly-frequency data for each city 
would require a separate Freedom of Information Act request that would have taken prohibitively long. 
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differences between counties, T is a matrix of month-year fixed effects that control for common 

variation over time across all counties (e.g.: a harsh winter, a state-wide recession, or a state-

wide change in alcohol control laws), and the variable of interest is the product of a treated 

county indicator (Treated) and a time indicator equal to one after the Uber launch in May 2011 

(Post).  

 

4. Difference-in-Differences Results 

In Table 2 I present results from difference-in-differences estimation. Each column contains 

an estimate of the effect of Uber on the alcohol-related collision rate, clustered standard errors in 

parentheses, and wild-bootstrap county-clustered standard errors in brackets.17 These results are 

presented with and without county-specific time trends for the four different specifications of 

control group. The magnitude of the estimate is consistent across specifications, as is the size of 

the standard errors. Scaled by the mean of the dependent variable, the effect represents an 

average decrease in the alcohol-related collision rate of 17 to 35 percent for the treated counties 

taken as a group. The estimates from specifications two through four restrict the control group to 

more comparable counties, and show a 25 to 35 percent decrease in the alcohol-related collision 

rate.   

To check the robustness of these results, Table 3 presents a placebo test using an intervention 

date of June 2009, the midpoint of the pre-intervention time-series, instead of the observed 

intervention date of May 2011. The new pre-intervention period is from July 2007 to April 2009. 
																																																								
17 Cameron, Gelbach, and Miller (2008) introduce wild bootstrap standard errors to address within-cluster 
dependence, which becomes particularly important with data that has few clusters. One iteration of the wild 
bootstrap procedure reforms the dependent variable by multiplying each cluster of residuals by 1 or  -1 and adding 
the resulting residual values to the fitted value. While 62 New York State counties are examined in this study, in 
some specifications eight control counties are compared to four treatment counties. My cluster total of twelve 
approaches the “ten or less” threshold where Cameron, Gelbach, and Miller show incorrect standard errors from 
other methods. I use Graham, Arai, and Hagströmer’s R package, “multiwaycov” which can be accessed here: 
http://sites.google.com/site/npgraham1/research/code  
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The estimated effects of the placebo intervention differ strongly from the actual intervention 

results in Table 2, producing effects with much smaller magnitudes, most of which are positively 

signed. None of the effects are significant at the 1 percent level though some are significant at 

the 5% level, and the inclusion of county-specific time trends causes changes in sign, magnitude, 

and significance.  This difference in the estimated effects suggests that the estimated treatment 

effects in Table 1 are not easily reproducible by chance.  

To help put the estimated effects of the Uber launch from Table 2 in context, Table 4 scales 

the treatment effect by the number of registered vehicles and the average monthly crash count in 

each treated county in 2010, the last calendar year before the Uber launch. This table shows that 

if the average effect were apportioned across the four treated counties by their population of 

vehicles, it would imply a crash count decrease in Queens of 16 - 22 crashes per month, a 33 to 

45 percent decrease from Queens’ 2010 average monthly alcohol-related crash count. On the 

lower end of the spectrum, these average effects imply 5 – 7 fewer crashes per month in 

Manhattan, a 16 to 22 percent decrease based on Manhattan’s 2010 average alcohol-related crash 

count. The transformed estimates in Table 4 put the results in a more relatable format, but it is 

unrealistic to expect the introduction of a new transit mode to produce uniformly distributed 

effects over the population of vehicles in a city.   

To examine heterogeneity in the Uber effect on drunk driving in each NYC borough, Table 5 

presents the same OLS difference-in-differences estimation, but with separate treatment effects 

for each treated county using the following estimating equation. 

!"!" = !! + !!!! + !!!! + !!(!"#$!×!"#$%!)+ !!(!"#$!×!"##$%&'!)
+ !!(!"#$!×!"##$%!)+ !!(!"#$!×!"#ℎ!""!#!)+ !!" 

(2) 

Allowing for separate treatment effects for each treated county, I find that the magnitude of the 

effect for Manhattan is much larger than the average effects in Table 2. Instead of collision-rate 
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effect between -2.5 and -3.3 as in Table 2, Manhattan’s separate treatment effect ranges between 

-3.5 and -4.3 when county-specific time trends are included. The separate treatment effect for 

Queens is much smaller than the NYC average treatment effect, with a change in collision rate 

ranging between -1.9 and -2.7 when county-specific time trends are included. Both Brooklyn and 

the Bronx show treatment effects close to the NYC average effect. Rather than filling in areas 

with less access to public-transit, this range of effects suggests the Uber launch served as an 

addition mode to access the established urban center.  

Just as I estimated separate treatment effects for each NYC borough to highlight the 

heterogeneity of treatment effects across space, I estimate separate treatment effects over time. 

Table 6 presents difference-in-differences estimates for treatment effects that may vary each year 

after the intervention.18 This method shows smaller effects immediately following the Uber 

launch and larger effects in the later years of the sample period. Compared to the average 

alcohol-related crash rate effect of -2.5 from Table 2 using the population-dense control group, 

the separate time effect estimation shows a -1.48 change in the crash rate for the first year after 

the Uber launch, a -3.9 change in the crash rate in year two, and a -3.27 change in the crash rate 

in year three. This tendency for a small effect in year one is robust across control group 

specifications and may be explained by low salience immediately after the Uber launch, low 

consumer trust for non-medallion taxi services, or the dynamics of Uber’s fleet size through 

driver acquisition.  

 

5. Synthetic Control Analysis 

																																																								
18 I have borrowed the methodology from Wolfers’ (2006) study on unilateral divorce laws. His post-intervention 
time series is longer than mine, so instead of bins of 2 years, I use a dummy variable for each post-treatment single 
year available in this study: 2011, 2012, and 2013.   
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The analysis above establishes that there was a large, negative effect of Uber’s NYC launch 

on alcohol-related collisions.  As a further robustness check and also to explore the dynamics of 

county-by-county effects, I now employ a synthetic control analysis and examine each treated 

borough separately.19 

Synthetic control methods may improve upon standard difference-in-differences analysis in 

identifying a control group that more closely resembles the treatment group in the pre-treatment 

period and is therefore a more plausible counterfactual. The time series plot of automobile 

collisions is noisier than the time series typically used in synthetic control analyses, making it 

difficult to achieve a reasonable fit between the treated group and the synthetic control in the pre-

treatment period.20 To help select control units based on signal rather than noise, I run the 

synthetic control optimization process on a 3-month moving average of the original series.  

For each of the four treated boroughs in New York City, all of the 58 untreated counties 

serve as members of the donor pool. Each synthetic comparison county I produce is the strictly 

positively weighted sum of some combination of counties from the donor pool. The non-

negative, mean-squared-error minimizing county weights that produce each synthetic control 

county series are provided in Appendix 2. I use only the pre-intervention alcohol-related 

collision rate values to construct the synthetic control weights. 

Figure 5 shows the synthetic control gap plots for each treated county, with a vertical line to 

mark the May 2011 entry of Uber in New York City. The largest effect over time appears to be 

in Brooklyn (Kings County), though all of the treated boroughs show significant divergence from 

																																																								
19 Abadie, Diamond, and Hainmueller’s (2010) synthetic controls method selects a weighted average of several 
potential control units based on pre-treatment variables for use in difference-in-differences estimation. This method 
is deployed in this study using Abadie, Diamond, and Hainmueller’s R package “Synth,” available here: 
https://cran.r-project.org/web/packages/Synth/Synth.pdf 
20 Cigarette sales per capita in Abadie et al (2010) and GDP per capita in Abadie and Gardeazabal (2003) are 
significantly smoother.	
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their synthetic control, suggesting an increase in Uber fleets and the NYC population’s learning 

curve. 

As a robustness check, I implement the synthetic control method using Richmond County 

(Staten Island), a similar but untreated county, to produce a placebo synthetic control gap plot. 

Staten Island is a borough of New York City, but access to Uber was minimal even years after 

the Uber launch in New York City (see Table 1 for a comparison of pre-intervention Uber 

pickups by county). In Figure 6, the gap plot does not show the same decrease as the counties in 

Figure 5. This lack of effect in Figure 5 is further evidence that the Uber intervention in New 

York City is not easily replicated by chance. It is possible that the lack of effect in the Staten 

Island plot, however, is a product of a poorly-fit synthetic control unit since the pre-period gap 

plot varies widely from the zero line. 

For a more rigorous robustness check of the synthetic control results, I follow Abadie et al. 

(2010) and perform a permutation test. Plotting a synthetic control gap plot for each of the 62 

New York State counties in the same figure, allows me to visually check whether the New York 

City treatment counties constitute extreme events in the distribution of all New York State 

county gap plots with a May 2011 intervention date. If each treated county plot is not more 

extreme than 95 – 99% of the untreated county plots in the distribution of such plots, it might be 

an indication that the synthetic control outcome could be obtained by chance.  

Figure 7 shows all 62 synthetic control gap plots, one for each New York State county. The 

treated county plots (for Manhattan, Brooklyn, the Bronx, and Queens) are shown in red and the 

untreated county plots shown in blue. All synthetic control gap plots are constructed from 3-

month moving averages of the original series to reduce the probability of optimizing on noise 

rather than central tendency. I present all 62 plots in Figure 7 for completeness but my analysis is 
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based on Figure 8 and 9 both of which omit poorly constructed plots with high mean squared 

prediction errors (MSPE) in the pre-period. If a synthetic county series fits the original county 

series poorly in the pre-period, it is likely that the post-intervention period effects are mostly 

noise. I seek to compare the treated county synthetic control gap plots only to a distribution of 

similarly well-constructed control county gap plots. In this spirit, I omit control county gap plots 

with very large MSPEs in two waves based on cutoffs that are multiples of my treatment county 

MSPEs.  

Figure 8 omits any county with a MSPE greater than 20 times Queens’ MSPE. Figure 9 

omits any county with a MSPE greater than 5 times Queens’ MSPE for a stricter level of 

comparability. Figure 8 contains 38 plots and Figure 9 contains 20 plots out of the original 62. 

These sample sizes would suggest that each treated county plot should be more extreme than all 

but two or one plot in the distribution, respectively. All four of New York City’s treated borough 

treatment effects were extreme outcomes in the distribution of comparable synthetic control plots 

with a May 2011 intervention date.  

 

6. Conclusion 

Uber’s launch in New York City produced quasi-experimental public health data in New 

York City. Leveraging this intervention, I estimated the effect of Uber’s entrance on drunk 

driving using alcohol-related collisions and designating unaffected New York State counties as 

counterfactuals. Using difference-in-differences estimation I find that the introduction of Uber 

decreased the alcohol-related collision rate by 25 to 35 percent in affected counties. Using 

differentiated treatment effects in a difference-in-differences framework, and later using 

synthetic control methodology, I decompose this effect for each of four New York City counties 
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that experienced significant Uber access. I find that Manhattan, where public transit and cabs 

were already plentiful, has the largest effect. To determine if this effect was sustained, I 

decompose the treatment effect over time and find that the effect of the intervention increased 

over time before tapering off. Synthetic control analysis shows a significant dynamic decrease in 

drunk driving in all four treated boroughs, and a permutation test on the synthetic control results 

suggests these results were not random. Placebo and robustness tests did not show significant 

deviations from this narrative. 

While non-medallion cabs companies including Uber continue to spread to other cities, this 

study may provide some insight for municipalities’ transit decisions. It is vital to recall, however, 

that alcohol-related collision reductions of this magnitude are not necessarily generalizable to 

other cities, as New York City enjoyed many forms of public transit for a century before the 

Uber launch and boasts a large population that does not own cars, which might encourage higher 

adoption rates of new transit options. Two studies have been published since I began this project 

that examine drunk driving reductions from Uber access in areas not traditionally known for 

public transit.21 They show a smaller negative vehicular homicide effect of Uber access in 

California and a puzzling increase in alcohol-related traffic fatalities in metropolitan counties 

with Uber access across the US, respectively.  

City government’s provision of transportation services for intoxicated consumers is an 

important public health concern and allowing non-medallion cab services like Uber seems to 

help with that goal. After the Uber launch, each of New York City’s boroughs experienced a 

different magnitude of effect and different dynamic effects over time, however, demonstrating 

that the experience of different neighborhoods within a metropolitan area may vary widely from 

																																																								
21	See Greenwood and Wattel (2015) for an analysis using California, and Brazil and Kirk (2016) for an analysis 
using US metropolitan areas.		
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the average effect for the entire area. The introduction of a service like Uber is not necessarily 

homogenously distributed in a city, even years after its launch, and some neighborhoods, like 

Staten Island, may not have access at all.  

Without microdata on Uber’s pickups on Staten Island, generated from another author’s 

freedom of information request, Uber’s 2011 New York City launch would seem like evidence 

that Staten Island was “treated” with a significant increase in cab service. In service of reducing 

the cost of the alternative to drunk driving for city residents, city governments should examine 

the microdata of transit access in their city, since this study shows that services like Uber will not 

necessarily target neighborhoods underserved by transit and complete access for most of the 

city’s population could take many years to become reliable.  
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Table 1: New York City Uber Pickups By Borough, 2014

Ride Count
Average Rides 

Per Day Ride Count
Average Rides 

Per Month
Average Rides 

Per Day
Manhattan 453,547 15,118.2 3,443,456 573,909.3 18,920.1
Brooklyn 61,686 2,056.2 593,594 98,932.3 3,261.5
Queens 32,881 1,096.0 342,225 57,037.5 1,880.4
Bronx 3,023 100.8 31,584 5,264.0 173.5

Staten Island 121 4.0 1,034 172.3 5.7

April 2014

Note: this dataset was provided via a freedom of information request to the New York City Taxi 
and Limousine Commission from fivethirtyeight.com, available at 
https://github.com/fivethirtyeight/uber-tlc-foil-response

April - September 2014
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Dependent Variable: Alcohol-Related Collisions per 100,000 Registered Vehicles by County

treatment -2.42 -3.30 -2.72 -3.32
(0.70) (0.52) (0.76) (0.51)
[0.68] [0.50] [0.71] [0.47]

County Fixed Effects Y Y Y Y
County Time Trends Y Y

Dep. Var. Mean 14.08 14.08 9.47 9.47
%Δ -17.2% -23.5% -28.7% -35.1%

p value < 0.001 < 0.001 < 0.001 < 0.001
N 4526 4526 1022 1022

Adj. R Sq. 0.27 0.28 0.56 0.57

treatment -3.08 -2.50 -2.77 -2.81
(0.75) (0.46) (0.89) (0.78)
[0.66] [0.42] [0.81] [0.72]

County Fixed Effects Y Y Y Y
County Time Trends Y Y

Dep. Var. Mean 9.79 9.79 11.17 11.17
%Δ -31.5% -25.5% -24.8% -25.1%

p value < 0.001 < 0.001 < 0.001 < 0.001
N 1022 1022 876 876

Adj. R Sq. 0.69 0.71 0.33 0.33

Table 2: Difference-in-Differences OLS Estimates

full data set
matching on geographic 

proximity

(1) (2)

matching on pre-period 
population density

(3)

matching on pre-period 
dependent variable

(4)

Note: OLS estimates of ITT effect between treated counties (New York, Kings, Queens, Bronx) and 
control counties that differ in each specification. Specification (1) includes all New York counties. 
Specification (2) includes Richmond, Nassau, Suffolk, Westchester, Rockland, Dutchess, Orange, 
Putnam, Ulster and Sullivan counties. Specification (3) includes Richmond, Nassau, Suffolk, Rockland, 
Westchester, Monroe, Erie, Schenectady, Onondaga, and Albany counties. Specification (4) includes 
Nassau, Rockland, Schenectady, Niagara, Onondaga, Yates, Delaware, and Broome counties. County-
level clustered standard errors are reported in parentheses. County-level clustered wild-bootstrap 
standard errors using Rademacher weights are reported in brackets. All specifications include  month-
year fixed effects.    
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Dependent Variable: Alcohol-Related Collisions per 100,000 Registered Vehicles by County

 

treatment 0.76 -0.52 0.82 0.21
(0.38) (0.71) (0.60) (0.88)
[0.38] [0.66] [0.55] [0.88]

County Fixed Effects Y Y Y Y
County Time Trends Y Y

Dep. Var. Mean 14.70 14.70 10.20 10.20
%Δ 5.2% -3.5% 8.0% 2.1%

p value 0.05 0.44 0.02 0.788175
N 2852 2852 644 644

Adj. R Sq. 0.27 0.44 0.58 0.59

treatment 0.25 1.15 0.52 0.30
(0.31) (0.64) (0.42) (1.25)
[0.29] [0.56] [0.39] [1.10]

County Fixed Effects Y Y Y Y
County Time Trends Y Y

Dep. Var. Mean 10.43 10.43 11.94 11.94
%Δ 2.4% 11.0% 4.4% 2.5%

p value 0.39 0.04 0.18 0.79
N 644 644 552 552

Adj. R Sq. 0.69 0.69 0.30 0.29

(3) (4)
matching on pre-period 

population density
matching on pre-period 

dependent variable

Note: For a placebo treatment date of June 2009, OLS estimates of the ITT between treated 
counties (New York, Kings, Queens, Bronx) and controls that differ in each specification. 
Specification (1) includes all New York counties. Specification (2) includes Richmond, Nassau, 
Suffolk, Westchester, Rockland, Dutchess, Orange, Putnam, Ulster and Sullivan counties. 
Specification (3) includes Richmond, Nassau, Suffolk, Rockland, Westchester, Monroe, Erie, 
Schenectady, Onondaga, and Albany counties. Specification (4) includes Nassau, Rockland, 
Schenectady, Niagara, Onondaga, Yates, Delaware, and Broome counties. Heteroskedastic-
consistent standard errors are reported in parentheses. Wild-bootstrap standard errors clustered 
at the county level using a Rademacher distribution for weighting are reported in brackets. All 
specifications include state and month-year fixed effects.

Table 3: Placebo Difference-in-Differences OLS Estimates

(1) (2)

full data set
matching on geographic 

proximity
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Table 4: Difference-in-Differences Estimates 

Estimate -2.42 -3.30 -2.72 -3.32 -3.08 -2.50 -2.77 -2.81
Dep Var Mean 13.64 13.64 9.09 9.09 9.57 9.57 10.85 10.85
County Fixed Effects Y Y Y Y Y Y Y Y
County Time Trends Y Y Y Y
Percentage Change -17.2% -23.5% -28.7% -35.1% -31.5% -25.5% -24.8% -25.1%

Manhattan
2010 Registered Vehicles 220,959 220,959 220,959 220,959 220,959 220,959 220,959 220,959
2010 Avg Monthly Crash Count 33.2 33.2 33.2 33.2 33.2 33.2 33.2 33.2
Implied Crash Decrease Per Month -5.3 -7.3 -6.0 -7.3 -6.8 -5.5 -6.1 -6.2
Borough-Specific Percentage Change -16% -22% -18% -22% -21% -17% -18% -19%

Brooklyn
2010 Registered Vehicles 403,125 403,125 403,125 403,125 403,125 403,125 403,125 403,125
2010 Avg Monthly Crash Count 53.7 53.7 53.7 53.7 53.7 53.7 53.7 53.7
Implied Crash Decrease Per Month -9.8 -13.3 -11.0 -13.4 -12.4 -10.1 -11.2 -11.3
Borough-Specific Percentage Change -18% -25% -20% -25% -23% -19% -21% -21%

Queens
2010 Registered Vehicles 667,093 667,093 667,093 667,093 667,093 667,093 667,093 667,093
2010 Avg Monthly Crash Count 49.2 49.2 49.2 49.2 49.2 49.2 49.2 49.2
Implied Crash Decrease Per Month -16.1 -22.0 -18.1 -22.1 -20.5 -16.7 -18.5 -18.7
Borough-Specific Percentage Change -33% -45% -37% -45% -42% -34% -38% -38%

Bronx
2010 Registered Vehicles 227,585 227,585 227,585 227,585 227,585 227,585 227,585 227,585
2010 Avg Monthly Crash Count 28.8 28.8 28.8 28.8 28.8 28.8 28.8 28.8
Implied Crash Decrease Per Month -5.5 -7.5 -6.2 -7.6 -7.0 -5.7 -6.3 -6.4
Borough-Specific Percentage Change -19% -26% -22% -26% -24% -20% -22% -22%
Note: The top five rows of this table contain the estimated difference-in-differences effects, dependent variable mean, specification indicators, and percentage 
change levels already presented in Table 2. For intuition and clarity, these figures are converted to "crashes per month" and "borough-specific percentage change" to 
place the difference-in-difference estimates in context. Each named borough section below the header scales the average intent to treat effect by a particular 
borough's pre-intervention registered vehicle population and average monthly crash count from 2010. If the average effect represented in Table 2's difference-in-
differences estimation were directly applied to a particular borough, the implied decrease in crashes per month and the implied percentage change would be the 
quantities presented. The columns indicate the four sets of control counties compared to the treated NYC boroughs. Specification (1) includes all New York 
counties. Specification (2) includes Richmond, Nassau, Suffolk, Westchester, Rockland, Dutchess, Orange, Putnam, Ulster and Sullivan counties. Specification (3) 
includes Richmond, Nassau, Suffolk, Rockland, Westchester, Monroe, Erie, Schenectady, Onondaga, and Albany counties. Specification (4) includes Nassau, 
Rockland, Schenectady, Niagara, Onondaga, Yates, Delaware, and Broome counties. 

(All) (Proximity) (Pop Density) (Matched Rate)
1 2 3 4

Scaled by Pre-Period Level of Registered Vehicles by Treated County
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Table 5: Difference-in-Differences OLS Estimates With Differentiated Treatment Variables
Dependent Variable: Alcohol-Related Collisions per 100,000 Registered Vehicles

Manhattan x Treated -3.67 -4.28 -3.97 -4.30 -4.34 -3.48 -4.02 -3.79
(0.25) (0.42) (0.32) (0.39) (0.29) (0.32) (0.55) (0.71)
[0.24] [0.40] [0.29] [0.36] [0.26] [0.30] [0.50] [0.67]

Queens x Treated -0.32 -2.68 -0.62 -2.70 -0.99 -1.87 -0.67 -2.19
(0.25) (0.42) (0.32) (0.39) (0.29) (0.32) (0.55) (0.71)
[0.24] [0.40] [0.29] [0.36] [0.26] [0.30] [0.50] [0.67]

Brooklyn x Treated -2.60 -3.05 -2.89 -3.07 -3.26 -2.25 -2.94 -2.56
(0.25) (0.42) (0.32) (0.39) (0.29) (0.32) (0.55) (0.71)
[0.24] [0.40] [0.29] [0.36] [0.26] [0.30] [0.50] [0.67]

Bronx x Treated -3.09 -3.20 -3.39 -3.21 -3.76 -2.39 -3.44 -2.70
(0.25) (0.42) (0.32) (0.39) (0.29) (0.32) (0.55) (0.71)
[0.24] [0.40] [0.29] [0.36] [0.26] [0.30] [0.50] [0.67]

County Fixed Effects Y Y Y Y Y Y Y Y
County Trends Y Y Y Y
Depvar Mean 14.08 14.08 9.47 9.47 9.79 9.79 11.17 11.17
Observations 4526 4526 1022 1022 1022 1022 876 876
Adj. R-Sq 0.27 0.28 0.56 0.57 0.70 0.71 0.33 0.33

Matched on Pre-Period 
Dependent Variable

4

Note: OLS estimates of placebo ITT effect for July 2010 between treated counties (New York, Kings, Queens, Bronx) and controls that differ in 
each specification. Specification (1) includes all New York counties. Specification (2) includes Richmond, Nassau, Suffolk, Westchester, 
Rockland, Dutchess, Orange, Putnam, Ulster and Sullivan counties. Specification (3) includes Richmond, Nassau, Suffolk, Rockland, 
Westchester, Monroe, Erie, Schenectady, Onondaga, and Albany counties. Specification (4) includes Nassau, Rockland, Schenectady, Niagara, 
Onondaga, Yates, Delaware, and Broome counties. Cluster-robust standard errors clustered at the county level are reported in parentheses. Wild-
bootstrap standard errors clustered at the county level using Rademacher weights are reported in brackets. All specifications include state and 
month-year fixed effects.    

1

All Counties

2

Matched on Proximity

3

Matched on Population 
Density
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Table 6: Dynamic Treatment Estimates by Post-Intervention Year

Dependent Variable: Alcohol-Related Collision Rate

treatment x Year 1 -1.04 -2.10** -1.17 -2.08**
(0.65) (0.51) (0.66) (0.47)

treatment x Year 2 -3.50** -4.96** -3.78** -5.03**
(0.80) (0.73) (0.76) (0.68)

treatment x Year 3 -2.15** -3.99** -2.67** -4.24**
(0.80) (0.76) (0.82) (0.73)

County Time Trends Y Y
Dep. Var. Mean 14.08 14.08 9.47 9.47

N 4526 4526 1022 1022
Adj. R Sq. 0.27 0.28 0.56 0.58

treatment x Year 1 -1.53** -1.48** -0.76 -1.23
(0.60) (0.42) (1.00) (0.82)

treatment x Year 2 -3.96** -3.90** -4.30** -4.96**
(0.79) (0.59) (1.01) (0.82)

treatment x Year 3 -3.36** -3.27** -2.45** -3.28**
(0.83) (0.68) (0.98) (0.89)

County Time Trends Y Y
Dep. Var. Mean 9.79 9.79 11.17 11.17

N 1022 1022 876 876
Adj. R Sq. 0.70 0.71 0.33 0.34

matching on pre-period 
population density

matching on pre-period 
crash rate

Note: OLS estimates of ITT effect between treated counties (New York, Kings, Queens, Bronx) and 
control counties that differ in each specification. Specification (1) includes all New York counties. 
Specification (2) includes Richmond, Nassau, Suffolk, Westchester, Rockland, Dutchess, Orange, 
Putnam, Ulster and Sullivan counties. Specification (3) includes Richmond, Nassau, Suffolk, 
Rockland, Westchester, Monroe, Erie, Schenectady, Onondaga, and Albany counties. Specification (4) 
includes Nassau, Rockland, Schenectady, Niagara, Onondaga, Yates, Delaware, and Broome counties. 
County-level clustered standard errors are reported in parentheses. County-level clustered wild-
bootstrap standard errors using Rademacher weights are reported in parentheses. One asterisk 
indicates a p-value no greater than 0.05 and two asterisks indicates a p-value no greater than 0.01. All 
specifications include  month-year fixed effects.   

Difference-in-Differences OLS Estimates of Dynamic Treatment Effects For Year 1-3

(1) (2)

all counties
matching on geographic 

proximity

(3) (4)
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Figure 1: Chloropleth Map of New York State Alcohol-Related Collisions  

 
 
 
Figure 2: Chloropleth Map of New York State Alcohol-Related Collisions Rate  
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Figure 3: Average Alcohol-Related Collision Rates, Treated Counties Versus All Other Counties 

  
 
 
 
 
Figure 4: Alcohol-Related Collision Rates, Treated Counties Only 
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Figure 5: Synthetic Control Plots for Four Treated NY Counties 
 

  

  

  

Figure 6: Placebo Synthetic Control Plots for Richmond County (Borough of Staten Island) 
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Figure 7: Comparison Plot of Treated County Synthetic Control Gap Series to All Donor County Synthetic Control 

Gap Series (3-Month Moving Average) 

 

 
Figure 8: Comparison Plot of Treated County Synthetic Control Gap to Donor County Synthetic Control Gap Series 

Meeting the Criterion: < 20 Times the Treated County MSPE (3-Month Moving Average) 
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Figure 9: Comparison Plot of Treated County Synthetic Control Gap to Donor County Synthetic Control Gap Series 

Meeting the Criterion: < 5 Times the Smallest Treated County MSPE (3-Month Moving Average) 
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Appendix 1: 2010 Summary Statistics By County For Pre-Intervention Comparisons 

 
 
  

County Crash	Count Population
Licensed	
Drivers

Registered	
Vehicles

Crash	Rate	
(Registration)

Crash	Rate	
(License)

Crash	Rate	
(Population)

2006	
Population	
Density

2010	
Population	
Density

NEW	YORK 398 1,589,999 715,332 220,959 15.0 4.6 2.1 70,179.4 69,250.8
KINGS 644 2,510,446 871,173 403,125 13.3 6.2 2.1 35,532.7 35,553.7
BRONX 345 1,387,754 422,752 227,585 12.6 6.8 2.1 32,395.2 33,018.2
QUEENS 590 2,235,430 1,043,597 667,094 7.4 4.7 2.2 20,645.1 20,463.5

RICHMOND 122 469,370 293,746 246,539 4.1 3.5 2.2 8,163.3 8,026.2
NASSAU 757 1,340,685 988,094 903,543 7.0 6.4 4.7 4,624.0 4,676.4

WESTCHESTER 465 950,320 639,488 597,964 6.5 6.1 4.1 2,193.4 2,195.6
ROCKLAND 205 312,262 204,759 193,015 8.8 8.3 5.5 1,693.1 1,792.3
SUFFOLK 1219 1,494,273 1,084,187 1,067,068 9.5 9.4 6.8 1,611.2 1,638.1
MONROE 694 744,732 511,386 469,361 12.3 11.3 7.8 1,108.5 1,129.6

ERIE 766 919,000 644,398 556,969 11.5 9.9 6.9 882.4 880.1
SCHENECTADY 140 154,774 114,962 105,223 11.1 10.1 7.5 729.9 751.0
ONONDAGA 452 467,178 321,041 281,335 13.4 11.7 8.1 585.4 598.7
ALBANY 312 304,198 199,754 180,161 14.4 13.0 8.5 568.5 581.1
ORANGE 275 373,295 249,810 243,618 9.4 9.2 6.1 461.1 457.3
PUTNAM 99 99,775 76,377 79,140 10.4 10.8 8.3 435.0 431.4
NIAGARA 210 216,355 158,924 137,334 12.7 11.0 8.1 413.3 413.7
DUTCHESS 230 297,631 210,883 209,272 9.2 9.1 6.4 368.2 371.3
BROOME 220 200,388 140,757 126,471 14.5 13.0 9.1 277.7 283.5
SARATOGA 235 219,930 168,428 155,134 12.6 11.6 8.9 265.4 270.9
RENSSELAER 163 159,350 110,614 99,912 13.6 12.3 8.5 237.5 243.7
CHEMUNG 95 88,935 61,341 54,861 14.4 12.9 8.9 217.2 217.9
TOMPKINS 119 101,728 62,338 51,875 19.1 15.9 9.7 210.9 213.7
ONEIDA 220 234,756 160,751 137,102 13.4 11.4 7.8 192.9 193.6
ONTARIO 119 108,140 79,267 70,059 14.1 12.5 9.2 161.9 167.8
ULSTER 204 182,437 133,645 128,763 13.2 12.7 9.3 162.2 162.0
WAYNE 93 93,671 69,549 62,367 12.4 11.1 8.3 153.7 155.0
OSWEGO 123 122,132 85,548 72,500 14.1 12.0 8.4 129.1 128.1

CHAUTAUQUA 158 134,837 93,784 78,326 16.8 14.1 9.8 127.5 127.0
MONTGOMERY 76 50,213 35,607 31,766 19.9 17.8 12.6 121.3 124.0

GENESEE 88 60,016 44,290 37,897 19.3 16.6 12.2 119.1 121.5
CAYUGA 93 79,874 55,031 46,069 16.8 14.1 9.7 117.2 115.2
MADISON 67 73,319 50,495 41,474 13.5 11.1 7.6 107.0 111.8
FULTON 65 55,446 39,967 35,077 15.4 13.5 9.8 111.7 111.7
ORLEANS 58 42,853 29,562 25,421 19.0 16.4 11.3 110.4 109.5
SENECA 40 35,266 24,085 20,592 16.2 13.8 9.5 106.9 108.5

LIVINGSTON 61 65,246 45,118 39,563 12.8 11.3 7.8 101.5 103.2
COLUMBIA 58 62,978 47,740 45,701 10.6 10.1 7.7 99.0 99.1
CORTLAND 66 49,299 32,279 27,445 20.0 17.0 11.2 97.0 98.7
TIOGA 67 51,056 38,387 33,471 16.7 14.6 10.9 98.9 98.4

JEFFERSON 166 116,541 72,581 63,558 21.8 19.1 11.9 89.8 91.6
SULLIVAN 88 77,439 55,353 52,585 13.9 13.2 9.5 79.0 79.9
CLINTON 81 82,075 56,498 50,632 13.3 11.9 8.2 79.1 79.0
GREENE 65 49,140 37,578 36,383 14.9 14.4 11.0 76.9 75.9

WASHINGTON 75 63,258 45,344 39,343 15.9 13.8 9.9 75.9 75.7
WARREN 98 65,679 52,419 46,499 17.6 15.6 12.4 76.0 75.6
YATES 22 25,356 16,903 14,177 12.9 10.8 7.2 73.1 75.0

STEUBEN 129 98,973 71,976 61,444 17.5 14.9 10.9 70.5 71.1
WYOMING 57 42,098 29,700 24,279 19.6 16.0 11.3 71.9 71.0
OTSEGO 80 62,211 43,770 37,879 17.6 15.2 10.7 62.4 62.0

CATTARAUGUS 88 80,223 56,647 46,149 15.9 12.9 9.1 62.3 61.2
CHENANGO 62 50,364 38,256 33,133 15.6 13.5 10.3 57.9 56.3
SCHUYLER 25 18,334 14,020 12,189 17.1 14.9 11.4 59.1 55.8
SCHOHARIE 33 32,679 24,080 22,238 12.4 11.4 8.4 51.8 52.5
ALLEGANY 75 48,971 32,612 26,489 23.6 19.2 12.8 48.8 47.5
HERKIMER 57 64,454 45,493 37,413 12.7 10.4 7.4 44.9 45.7

ST.	LAWRENCE 118 111,929 74,696 60,706 16.2 13.2 8.8 41.4 41.7
DELAWARE 56 47,879 36,603 32,653 14.3 12.8 9.7 32.5 33.1
FRANKLIN 68 51,596 34,462 28,895 19.6 16.4 11.0 31.2 31.6
ESSEX 66 39,335 28,503 24,108 22.8 19.3 14.0 21.5 21.9
LEWIS 36 27,066 19,965 15,537 19.3 15.0 11.1 20.9 21.2

HAMILTON 11 4,832 4,737 3,963 23.1 19.4 19.0 3.0 2.8
Note:	Crash	counts	and	rates	are	for	alcohol-related	collisions	only.	Reported	crash	rates	are	alcohol-related	collisions	per	100,000	persons	of	the	indicated	
group	(i.e.:	license-holders).	License	holders	and	registered	vehicles	comprise	standard	automobile	licenses	and	registration	only	(no	heavy	trucks,	motorcycles,	
mopeds,	farm	equipment,	or	other	vehicles).	
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Appendix 2: Synthetic Control Weights 
 

 
 
 
 
  

Figure 2.1: Composition of Synthetic Control Counties From Section 5

Bronx Brooklyn Manhattan Queens Staten Island Donor County Name
0 0.224 0 0 0 ALBANY
0 0 0 0 0 ALLEGANY
0 0.025 0.029 0 0 BROOME

0.04 0.004 0.123 0 0 CATTARAUGUS
0 0 0 0 0 CAYUGA
0 0 0 0 0 CHAUTAUQUA
0 0 0 0 0 CHEMUNG
0 0 0 0 0 CHENANGO
0 0 0 0 0 CLINTON
0 0 0 0.015 0 COLUMBIA
0 0 0 0 0 CORTLAND
0 0 0 0 0 DELAWARE
0 0 0 0 0 DUTCHESS
0 0 0.048 0 0 ERIE
0 0 0 0 0 ESSEX
0 0 0 0 0 FRANKLIN
0 0 0 0 0 FULTON
0 0 0 0 0 GENESEE
0 0 0.018 0 0 GREENE
0 0 0 0 0 HAMILTON
0 0 0 0 0 HERKIMER
0 0.065 0 0 0 JEFFERSON
0 0 0 0 0 LEWIS
0 0 0 0 0 LIVINGSTON
0 0 0 0 0 MADISON
0 0 0.039 0.045 0 MONROE

0.038 0.088 0 0 0 MONTGOMERY
0 0.147 0 0.096 0.182 NASSAU
0 0 0 0 0 NIAGARA
0 0 0 0 0 ONEIDA

0.171 0.13 0.224 0.161 0 ONONDAGA
0 0 0 0 0 ONTARIO

0.174 0 0 0 0 ORANGE
0 0 0 0 0 ORLEANS
0 0 0 0 0 OSWEGO

0.141 0.054 0 0 0 OTSEGO
0 0 0 0 0 PUTNAM
0 0.01 0.224 0 0 RENSSELAER

0.245 0.11 0 0.582 0 RICHMOND
0 0.07 0 0 0 ROCKLAND
0 0 0 0 0 SARATOGA

0.051 0 0.105 0 0 SCHENECTADY
0 0 0 0 0 SCHOHARIE
0 0 0 0 0 SCHUYLER
0 0 0 0 0 SENECA

0.019 0 0 0 0 STEUBEN
0 0 0 0 0 STLAWRENCE
0 0 0 0.068 0 SUFFOLK
0 0 0 0 0 SULLIVAN
0 0 0 0 0 TIOGA
0 0 0 0.023 0 TOMPKINS
0 0 0 0 0 ULSTER

0.035 0.076 0.191 0 0 WARREN
0 0 0 0 0 WASHINGTON
0 0 0 0 0 WAYNE
0 0 0 0 0.818 WESTCHESTER

0.087 0 0 0.009 0 WYOMING
0 0 0 0 0 YATES

Synthetic Control Weights

Note: weights from synthetic control process producd a synthetic observational unit for each of the four 
treated counties above and one untreated county (Staten Island) for placebo test purposes. For the 
Staten Island synthetic control unit, the following counties were omitted from the potential donor pool 
before mean square prediction error minimization: Richmond county (Staten Island), Kings county 
(Brooklyn), New York county (Manhattan), Queens county, and Bronx county.
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Appendix 3: Main Results Using Crash Counts as Dependent Variable 

 
 
 
  

Dependent Variable: Alcohol-Related Collision Count

treatment -10.80 -10.82 -8.01 -10.75
(1.027) (1.987) (2.269) (2.837)
[1.009] [1.889] [2.108] [2.554]

County Fixed Effects Y Y Y Y
Population of Vehicles Y Y Y Y
County Time Trends Y Y

Dep. Var. Mean 15.24 15.24 30.68 30.68
%Δ -17.2% -23.5% -28.7% -35.1%

p value < 0.001 < 0.001 < 0.001 < 0.001
N 4526 4526 1022 1022

Adj. R Sq. 0.93 0.93 0.90 0.91

treatment -7.93 -8.41 -9.98 -10.54
(2.417) (2.778) (1.569) (1.974)
[2.196] [2.450] [1.411] [1.769]

County Fixed Effects Y Y Y Y
Population of Vehicles Y Y Y Y
County Time Trends Y Y

Dep. Var. Mean 38.91 38.91 25.35 25.35
%Δ -31.5% -25.5% -24.8% -25.1%

p value < 0.001 < 0.001 < 0.001 < 0.001
N 1022 1022 876 876

Adj. R Sq. 0.88 0.89 0.88 0.89

matching on pre-period population 
density matching on pre-period crash rate

Note: OLS estimates of ITT effect between treated counties (New York, Kings, Queens, Bronx) and control counties 
that differ in each specification. Specification (1) includes all New York counties. Specification (2) includes 
Richmond, Nassau, Suffolk, Westchester, Rockland, Dutchess, Orange, Putnam, Ulster and Sullivan counties. 
Specification (3) includes Richmond, Nassau, Suffolk, Rockland, Westchester, Monroe, Erie, Schenectady, Onondaga, 
and Albany counties. Specification (4) includes Nassau, Rockland, Schenectady, Niagara, Onondaga, Yates, Delaware, 
and Broome counties. County-level clustered standard errors are reported in parentheses. County-level clustered wild-
bootstrap standard errors using Rademacher weights are reported in brackets. All specifications include  month-year 
fixed effects.   

Table 3.1: Difference-in-Differences OLS Estimates

(1) (2)

full data set matching on geographic proximity

(3) (4)
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Figure 3.1: Synthetic - Observed Synthetic Control Gap Plots, Alcohol-Related Crash Counts 
(3 Month Moving Average) 

  

  

 

 

Note: synthetic control gap plots represent the difference between the observed NYC counties 
and their synthetic control counterparts. These plots use a 3-month moving average of alcohol-
related crash counts by county at monthly frequency using the same methodology as the 
synthetic control plots of the alcohol-related collision rates presented earlier in the paper. As a 
reminder, Staten Island did not receive sufficient Uber coverage at this time, so its flat gap plot is 
a robustness check.  
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Table 3.2
Weights For Synthetic Control Counties Using Alcohol-Related Collision Counts

Orange 0.26 Albany 0.424 Warren 0.265 Onondaga 0.681
Nassau 0.17 Nassau 0.208 Onondaga 0.18 Suffolk 0.142

Richmond 0.156 Suffolk 0.203 Monroe 0.172 Monroe 0.124
Onondaga 0.154 Onondaga 0.117 Richmond 0.111 Richmond 0.053
Rockland 0.1 Monroe 0.048 Westchester 0.103

Otsego 0.084 Albany 0.068
Wyoming 0.074 Erie 0.052

Montgomery 0.001 Nassau 0.048

Bronx Brooklyn Manhattan Queens

Note: these are the county weights in the W matrix for each of the synthetic control counties using the alcohol-
related collision county series. This synthetic controls optimization process uses alcohol-related crash counts 
and vehicle registrations as predictor series, as well as all of the individual monthly observations of alcohol-
related crash counts as special predictors. 
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