East St. Louis, Illinois, United States
Evaluating the Impacts of Connected Vehicle Technology on Evacuation Delay
Summary Information
Evacuation orders placed without any notice or warning can place substantial demands on transportation systems. Connected vehicle (CV) technology, with real-time vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communications can help emergency managers develop efficient and cost-effective traffic management plans for no-notice (as opposed to short-notice) evacuation events. The primary way it is expected for CVs to influence performance of an evacuation is by exchanging real-time information about downstream traffic conditions. This research explored and evaluated the impacts of connected vehicles on the no-notice evacuation of a downtown metropolitan area.
Methodology
Microsimulation software, VISSIM, was used to model a simulated road network of the East St. Louis, Illinois area during evacuation events in 2014 using traffic data provided by the Illinois DOT. Conditions were evaluated with CV penetration rates ranging from 0 to 30 percent. Average speed and average delay data were also collected.
Findings
Scenarios with a CV penetration rate of 30 percent were associated with a 60 percent reduction in total delay, despite an initial increase in delay. Scenarios with a longer duration were more likely to benefit from CV deployment.